Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Nonmonotonic Effect Of Chemical Heterogeneity On Interfacial Crack Growth At High-Angle Grain Boundaries In Fe-Ni-Cr Alloys, Yuchu Wang, Bita Ghaffari, Christopher Taylor, Simon Lekakh, Carlos Engler-Pinto, Larry Godlewski, Yang Huo, Mei Li, Yue Fan Jul 2023

Nonmonotonic Effect Of Chemical Heterogeneity On Interfacial Crack Growth At High-Angle Grain Boundaries In Fe-Ni-Cr Alloys, Yuchu Wang, Bita Ghaffari, Christopher Taylor, Simon Lekakh, Carlos Engler-Pinto, Larry Godlewski, Yang Huo, Mei Li, Yue Fan

Electrical and Computer Engineering Faculty Research & Creative Works

An intermittent pattern is observed in the modeling of interfacial cyclic-loading crack growth at high-angle grain boundaries in ternary Fe-Ni-Cr alloys. Different from conventional wisdom of stress-intensity factor, the abrupt crack advances are found driven by extreme value statistics - namely, the aggregation of atoms with most compressive residual stresses. In addition, inherently non-affine atomic stress fluctuations are discovered, and the fluctuations peak at intermediate level of chemical heterogeneity, causing the fastest crack growth. Implications of such nonmonotonic mechanism in regard to the origin of intermediate-temperature embrittlement phenomena are also discussed.


Cascaded Sapphire Fiber Bragg Gratings Inscribed By Femtosecond Laser For Molten Steel Studies, Dinesh Reddy Alla, Deva Prasad Neelakandan, Farhan Mumtaz, Rex E. Gerald, Laura Bartlett, Ronald J. O'Malley, Jeffrey D. Smith, Jie Huang Jan 2023

Cascaded Sapphire Fiber Bragg Gratings Inscribed By Femtosecond Laser For Molten Steel Studies, Dinesh Reddy Alla, Deva Prasad Neelakandan, Farhan Mumtaz, Rex E. Gerald, Laura Bartlett, Ronald J. O'Malley, Jeffrey D. Smith, Jie Huang

Electrical and Computer Engineering Faculty Research & Creative Works

This research reports a distributed fiber optic high-temperature sensing system tailored for applications in the steel industry and various other sectors. Recent advancements in optical sensor technology have led to the exploration of sapphire crystal fibers as a solution for sensing in harsh environments. Utilizing a femtosecond (fs) laser, cascaded fiber Bragg gratings (FBGs) were meticulously fabricated within a multimode sapphire optical fiber. These FBGs endowed the system with distributed sensing capabilities and underwent rigorous testing under extreme temperatures, reaching up to 1,800 °C. The study delves into the investigation of the FBG reflection spectrum, facilitated by the development of …