Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

An Overview Of How To Measure The Kinetic Properties Of An Anode Material For The Chlorine Evolution Reaction, Cameron Vann May 2024

An Overview Of How To Measure The Kinetic Properties Of An Anode Material For The Chlorine Evolution Reaction, Cameron Vann

Reviews, Analyses, and Instructional Studies in Electrochemistry (RAISE)

The process of generating chlorine gas using electrolysis in aqueous systems is well established. However, a new process requires chlorine to be generated at high temperatures using molten salt. This harsh environment requires a new study of anode materials for the chlorine evolution reaction. Anode materials can be compared by their kinetic parameters, the transfer coefficient α and the exchange current i0. The basic theory of these properties as they relate to the chlorine evolution reaction has been detailed and an analysis method for finding these effective parameters has been shown and demonstrated.


Review Of Cyclic Voltammetry Measurements For Uranium In Flinak Molten Salt, Jackson Ivory May 2024

Review Of Cyclic Voltammetry Measurements For Uranium In Flinak Molten Salt, Jackson Ivory

Reviews, Analyses, and Instructional Studies in Electrochemistry (RAISE)

The electrochemical behavior of uranium FLiNaK molten salts is explored, focusing on cyclic voltammetry (CV) as a powerful tool for redox characterization and diffusion studies. Through a comprehensive review of recent research, the study highlights the significance of CV in understanding electrode kinetics, material compatibility, and process optimization in molten salt environments. The findings underscore the potential of FLiNaK molten salt reactors in advancing nuclear energy technologies, fuel processing, and waste management strategies. Collaborative interdisciplinary efforts are emphasized to address challenges and accelerate innovation in electrochemical methods for nuclear applications.