Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 16 of 16

Full-Text Articles in Engineering

Development Of A New Affinity Membrane For Rapidly Purifying Non-Antibody Proteins, Friendship Edioma Aug 2022

Development Of A New Affinity Membrane For Rapidly Purifying Non-Antibody Proteins, Friendship Edioma

All Theses

This thesis project describes the modification and evaluation of a new affinity membrane for rapid chromatographic purification of non-antibody proteins. The affinity membrane utilizes Im7/CL7 coupling technology developed by Dr. Vassylyev's lab at the University of Alabama Birmingham (UAB), licensed by TriAltus Bioscience. The behavior of the membrane was evaluated using purified CL7-tagged Cas9 as my model protein for static and dynamic binding capacity analysis.

Chapter one provides an overview on biopharmaceutical drug production process development. I discuss how protein drugs are produced, isolated, and purified from the cell supernatant after upstream phases are completed. Despite increasing demands for biologics, …


Quantification Of Slit-Like Pores Through Using Liquid Crystals As A Template, Dominique Savage May 2022

Quantification Of Slit-Like Pores Through Using Liquid Crystals As A Template, Dominique Savage

Chemical Engineering Undergraduate Honors Theses

The purpose of this research is to manufacture a membrane with slit-like pores to achieve particle filtration. Slit-like pore membranes are preferred over conventional membranes with cylindrical pores since slit-like pores have two length scales that can be manipulated to better control cut off and flux through the membrane. This project focuses on manufacturing slit-like pore membranes through the use of two liquid crystals, 1,4-bis[4-(6-acryloyloxyhexyloxy)benzoyloxy]-2-methylbenzene (RM257) and 4-Cyano-4′-pentylbiphenyl (5CB). This method for making slit-like pores has not been widely investigated nor has the morphology of the membrane pores and mechanical properties of such a membrane been addressed. It was found …


Defining Interactions Between Deformable Dna Origami And Lipid Bilayers Through Molecular Dynamics Simulation, Zachary A. Loyd May 2022

Defining Interactions Between Deformable Dna Origami And Lipid Bilayers Through Molecular Dynamics Simulation, Zachary A. Loyd

Chancellor’s Honors Program Projects

No abstract provided.


Inherently Porous Atomically Thin Membranes For Gas Separation, Harpreet Atwal Aug 2021

Inherently Porous Atomically Thin Membranes For Gas Separation, Harpreet Atwal

Electronic Thesis and Dissertation Repository

Membranes made from atomically thin materials promise hundreds of times higher production rates than conventional polymer membranes for separation applications. Graphene is impermeable to gases but becomes selectively permeable once pores are introduced into it but creating trillions of nanopores over large areas is difficult. By instead choosing an inherently porous two-dimensional material with naturally identical pores repeated at high density, we may circumvent this challenge. In this work, we explore the potential of two candidate materials, 2D polyphenylene and graphdiyne. We synthesize cyclohexane-m-phenylene, a monomer of 2D polyphenylene. We then develop an atomic force microscopy technique for measuring the …


The Effects Of Solution Condition On Virus Filtration Performance, Fnu Namila Dec 2020

The Effects Of Solution Condition On Virus Filtration Performance, Fnu Namila

Graduate Theses and Dissertations

Virus filtration is an integral part of the downstream purification of mammalian cell culture-derived biotherapeutics to assure the viral safety of the products. Virus filtration membranes remove viruses based on a size-exclusion mechanism. Commercial parvovirus filers possess unique membrane structure and are designed to remove smaller non-enveloped parvoviruses with size 18-26 nm. However, some filters face issues, such as pre-mature fouling, the decline of filtrate flux, and reduction in virus retention. This doctoral dissertation focused on identifying the factors that influence the filtrate flux and the virus retention capability of commercial virus filters. The effects of solution pH and ionic …


Scale-Up Of Polyaniline Cellulose Membranes, Isaac Bodemann May 2020

Scale-Up Of Polyaniline Cellulose Membranes, Isaac Bodemann

Chemical Engineering Undergraduate Honors Theses

Polyaniline coated cellulose membranes show impressive conductive properties that may be used to innovate traditional charged separation techniques, such as electrodeionization. However, these membranes are not sold to consumers, so they cannot be easily integrated into such systems. This research focuses on the scale-up and development of positively charged anion exchange membranes to be used in EDI cells. Novel cellulose membranes were made using lab-specific cellulose. These membranes were then coated using a polyaniline technique adopted from a paper titled, “Flexible Electrically Conductive Nanocomposite Membrane Based on Bacterial Cellulose and Polyaniline." This paper details the methods used to add the …


Methods For Film Coating Electrospun Fibers, Kristopher Dejean Jan 2020

Methods For Film Coating Electrospun Fibers, Kristopher Dejean

Williams Honors College, Honors Research Projects

Electrospinning uses high voltages to form polymer nanofiber membranes. These membranes have potential for use in filtration, tissue engineering, drug delivery, and catalysis. The nonwoven fiber mat is malleable but has a low tensile strength compared to a solid film of the same polymer. Joining the fibers with a thin film is desired to balance the strength and flexibility. Three methods of producing a film on fiber membrane were tested. The techniques are spraying then melting, spin coating, and dip coating. Electrospinning setup conditions, solvent ratios, damage to fibers, and spin coating speeds were determined. Research was abruptly stopped and …


Chemical And Physical Modification Of Thiol-Ene And Epoxy-Amine Networks For Advanced Control Of Gas Transport And Flame Retardant Behavior, Vivek Vasagar May 2019

Chemical And Physical Modification Of Thiol-Ene And Epoxy-Amine Networks For Advanced Control Of Gas Transport And Flame Retardant Behavior, Vivek Vasagar

Dissertations

Crosslinked polymers are widely used due to its several advantages not limited to high mechanical strength combined with the easy processability. Despite of its popular usage, the fundamental understanding of polymer structure affecting the desired properties is still lacking. This PhD thesis is in two parts, the first part is devoted to the design and developing a basic understanding of structure and chemical composition dependencies of gas transport, whereas in the second part a fundamental relationship between structure to the fire-retardant properties is established.

Membrane based gas separation technique has attracted interest of selective removal of carbon dioxide gas from …


Wafer Enhanced Electrodeionization For Conversion Of Co2 Into Bicarbonate Feed For Algae Cultured Photobioreactors, Kayvan Afrasiabi May 2018

Wafer Enhanced Electrodeionization For Conversion Of Co2 Into Bicarbonate Feed For Algae Cultured Photobioreactors, Kayvan Afrasiabi

Chemical Engineering Undergraduate Honors Theses

The world has acknowledged climate change as a global crisis that demands considerable attention, with one of the largest culprit being carbon emissions from industrial processing and power generation. While reduction in carbon emissions is the principal action towards mitigating the effects of climate change, scientists and engineers have given increased attention to alternative sources of energy as well as methods of carbon sequestration to coax traditional manufactory and industry into environmentally friendly and sustainable practices. One technology of this nature is the use of wafer-enhanced electrodeionization (WE-EDI) membranes to convert gaseous carbon dioxide (CO2) from industrial flue …


Membrane Surface Engineering For Biochemical Applications, Anh T. Vu Aug 2017

Membrane Surface Engineering For Biochemical Applications, Anh T. Vu

Graduate Theses and Dissertations

Synthetic membranes have been frequently used for many fields, such as, the food and beverage, biopharmaceutical, and biofuel industries. In the beer industry, microfiltration frequently suffers from fouling due to the interaction between different species. It is shown that polyphenols can form cross-links with protein molecules, forming insoluble aggregates. However, by adding an optimal amount of polysaccharides these aggregates can be disrupted thus reducing fouling by the aggregates. Confocal laser scanning microscopy (CLSM) is a powerful technique to locate the foulants inside the wet membrane in order to understand more about the behavior of fouling in microfiltration.

Membrane surface modification …


Mass And Charge Transport In Hydrated Polymeric Membranes, Marshall T. Mcdonnell Aug 2016

Mass And Charge Transport In Hydrated Polymeric Membranes, Marshall T. Mcdonnell

Doctoral Dissertations

Mass and charge transport through hydrated polymer membranes has significant importance for many areas of engineering and industry. Multi-scale modeling and simulation techniques were used to study transport in relation to two specific membrane applications: (1) food packaging and (2) additives for polymer electrolytes.

Chitosan/chitin films were studied due to their use as a sustainable, biodegradable food packaging film. The effects of hydration on the solvation, diffusivity, solubility, and permeability of oxygen molecules in these films were studied via molecular dynamics and confined random walk simulations. With increasing hydration, the membrane was observed to have a more homogeneous water distribution …


Effects Of Magnetically Induced Micro-Mixing On Nanofiltration Performance, Guanghui Song Dec 2015

Effects Of Magnetically Induced Micro-Mixing On Nanofiltration Performance, Guanghui Song

Graduate Theses and Dissertations

Nanofiltration (NF) is a relatively new membrane separation process mainly used for removing low molecular weight species from aqueous and non-aqueous solutions. NF membranes suffer from concentration polarization leading to membrane fouling thus compromised membrane performance. Magnetically responsive nanofiltration (NF) membranes functionalized with superparamagnetic nanoparticles (SPNs) attached to the chain ends of grafted polymer nanolayers have been shown to be effective in breaking concentration polarization at the membrane-liquid interface under an appropriate external oscillating magnetic field. Under an oscillating magnetic field, the movement of the polymer chains acts as micro-mixer leading to the suppression of concentration polarization and improved filtration …


Modified Polysulfone Nanofiltration Membrane Synthesis For Hydraulic Fracturing Water Recycle, Blake Alexander Johnson Dec 2015

Modified Polysulfone Nanofiltration Membrane Synthesis For Hydraulic Fracturing Water Recycle, Blake Alexander Johnson

Graduate Theses and Dissertations

The use of hydraulic fracturing has resulted in significant increases in the yield of oil and natural gas, as water pumped into wells at high pressure cracks the formations and releases the hydrocarbons that are locked in the rocks. This process has created large volumes of brackish water that is very difficult to process and is often disposed of into injection wells. Suspended solids and some dissolved solids are more readily removed, but the multivalent ions found in certain salts can precipitate in a well and complicate the reuse of flowback in future hydraulic fracturing operations.

Nanofiltration, a membrane separation …


Long Term Blood Oxygenation Membranes, Joseph V. Alexander Jan 2015

Long Term Blood Oxygenation Membranes, Joseph V. Alexander

Theses and Dissertations--Biomedical Engineering

Hollow fiber membranes are widely used in blood oxygenators to remove carbon dioxide and add oxygen during cardiopulmonary bypass operations. These devices are now widely used off-label by physicians to perform extracorporeal blood oxygenation for patients with lung failure. Unfortunately, the hollow fiber membranes used in these devices fail prematurely due to blood plasma leakage and gas emboli formation.

This project formed ultrathin (~100nm) polymer coatings on polymer hollow fiber membranes. The coatings were intended to “block” existing pores on the exterior surfaces while permitting high gas fluxes. This coating is synthesized using surface imitated control radical polymerization.

The coating …


Ab Initio Studies Of Proton Transport In Proton Exchange Membranes, Jeffrey Keith Clark May 2014

Ab Initio Studies Of Proton Transport In Proton Exchange Membranes, Jeffrey Keith Clark

Doctoral Dissertations

A molecular-level understanding of the factors that contribute to transport properties of proton exchange membranes (PEMs) for fuel cell applications is needed to aid in the development of superior membrane materials. Ab initio electronic structure calculations were undertaken on various PEM ionomer fragments to explore the effects of local hydration, side chain connectivity, protogenic group separation, and specific side chain chemistry on proton dissociation and transfer at low hydration. Cooperative interactions between both intra- and inter-molecular acidic groups and hydrogen bond connectivity were found to enhance proton dissociation at very low degrees of hydration. The energetics associated with proton transfer …


Layer-By-Layer Assemblies For Membrane-Based Enzymatic Catalysis, Andrew R. Tomaino Jan 2014

Layer-By-Layer Assemblies For Membrane-Based Enzymatic Catalysis, Andrew R. Tomaino

Theses and Dissertations--Chemical and Materials Engineering

While considerable progress has been made towards understanding the effect that membrane-based layer-by-layer (LbL) immobilizations have on the activity and stability of enzymatic catalysis, detailed work is required in order to fundamentally quantify and optimize the functionalization and operating conditions that define these properties. This work aims to probe deeper into the nature of transport mechanisms by use of pressure-induced, flow-driven enzymatic catalysis of LbL-functionalized hydrophilized poly(vinyldiene) (PVDF)-poly(acrylic acid) (PAA)-poly(allylamine hydrochloride) (PAH)-glucose oxidase (GOx) membranes. These membranes were coupled in a sealed series following cellulose acetate (CA) membranes for the elimination of product accumulation within the feed-side solution during operation. …