Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences

PDF

Series

2013

Breast neoplasms

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Pilot Study Assessment Of Dynamic Vascular Changes In Breast Cancer With Near-Infrared Tomography From Prospectively Targeted Manipulations Of Inspired End-Tidal Partial Pressure Of Oxygen And Carbon Dioxide, Shudong Jiang, Brian W. Pogue, Kelly E. Michaelsen, Michael Jermyn, Michael A. Mastanduno, Tracy E. Frazee, Peter A. Kaufman, Keith D. Paulsen Jul 2013

Pilot Study Assessment Of Dynamic Vascular Changes In Breast Cancer With Near-Infrared Tomography From Prospectively Targeted Manipulations Of Inspired End-Tidal Partial Pressure Of Oxygen And Carbon Dioxide, Shudong Jiang, Brian W. Pogue, Kelly E. Michaelsen, Michael Jermyn, Michael A. Mastanduno, Tracy E. Frazee, Peter A. Kaufman, Keith D. Paulsen

Dartmouth Scholarship

The dynamic vascular changes in the breast resulting from manipulation of both inspired end-tidal partial pressure of oxygen and carbon dioxide were imaged using a 30 s per frame frequency-domain near-infrared spectral (NIRS) tomography system. By analyzing the images from five subjects with asymptomatic mammography under different inspired gas stimulation sequences, the mixture that maximized tissue vascular and oxygenation changes was established. These results indicate maximum changes in deoxy-hemoglobin, oxygen saturation, and total hemoglobin of 21, 9, and 3%, respectively. Using this inspired gas manipulation sequence, an individual case study of a subject with locally advanced breast cancer undergoing neoadjuvant …


Scanning In Situ Spectroscopy Pplatform For Imaging Surgical Breast Tissue Specimens, Venkataramanan Krishnaswamy, Ashley M. Laughney, Wendy A. Wells, Keith D. Paulsen, Brian W. Pogue Jan 2013

Scanning In Situ Spectroscopy Pplatform For Imaging Surgical Breast Tissue Specimens, Venkataramanan Krishnaswamy, Ashley M. Laughney, Wendy A. Wells, Keith D. Paulsen, Brian W. Pogue

Dartmouth Scholarship

A non-contact localized spectroscopic imaging platform has been developed and optimized to scan 1 x 1 cm² square regions of surgically resected breast tissue specimens with ~150-micron resolution. A color corrected, image-space telecentric scanning design maintained a consistent sampling geometry and uniform spot size across the entire imaging field. Theoretical modeling in ZEMAX allowed estimation of the spot size, which is equal at both the center and extreme positions of the field with ~5% variation across the designed waveband, indicating excellent color correction. The spot sizes at the center and an extreme field position were also measured experimentally using the …