Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Engineering

Effects Of Prior Aging At 316°C In Argon On Inelastic Deformation Behavior Of Pmr-15 Polymer At 316°C: Experiment And Modeling, Ozgur Ozmen Mar 2009

Effects Of Prior Aging At 316°C In Argon On Inelastic Deformation Behavior Of Pmr-15 Polymer At 316°C: Experiment And Modeling, Ozgur Ozmen

Theses and Dissertations

The inelastic deformation behavior of PMR-15 neat resin, a high-temperature polymer, was investigated at 316 deg C. The experimental program was designed to explore the influence of strain rate on tensile loading, unloading, and strain recovery behaviors. In addition, the effect of the prior strain rate on the relaxation response of the material, as well as on the creep behavior following strain controlled loading were examined. The material exhibits positive, nonlinear strain rate sensitivity in monotonic loading and unloading. Early failures occur in the inelastic regime. The recovery of strain at zero stress and creep response are strongly affected by …


The Role Of Silicon Content On Environmental Degradations Of T91 Steels, Ajit K. Roy, D. Maitra, Pankaj Kumar Aug 2008

The Role Of Silicon Content On Environmental Degradations Of T91 Steels, Ajit K. Roy, D. Maitra, Pankaj Kumar

Mechanical Engineering Faculty Research

T91 grade steels showed a gradual enhancement in tensile ductility at ambient temperature due to an increase in Si content from 0.5 to 2.0 weight percent (wt.%). However, the ultimate tensile strength was reduced only above 1.5 wt.% Si. The corrosion potential became more active in an acidic solution with increasing temperature. The cracking susceptibility in a similar environment under a slow-strain-rate (SSR) condition was enhanced at higher temperatures showing reduced ductility, time to failure, and true failure stress. Cathodic potentials applied to the test specimens in SSR testing caused an enhanced cracking tendency at 30 and 60°C, suggesting hydrogen …


Tensile Deformation Of A Nickel-Base Alloy At Elevated Temperatures, Ajit K. Roy, Anand Venkatesh, Vikram Marthandam Aug 2008

Tensile Deformation Of A Nickel-Base Alloy At Elevated Temperatures, Ajit K. Roy, Anand Venkatesh, Vikram Marthandam

Mechanical Engineering Faculty Research

The results of tensile testing involving Waspaloy indicate that the failure strain was gradually reduced at temperatures ranging between ambient and 300 °C. Further, serrations were observed in the engineering stress versus strain diagrams in the temperature range of 300-600 °C. The reduced failure strain and the formation of serrations in these temperature regimes could be the result of dynamic strain aging of this alloy. The extent of work hardening due to plastic deformation was reduced at temperatures above 300 °C. A combination of ductile and intergranular brittle failures was seen at temperatures above 600 °C. γ′ was detected at …


Internal Damage Detection And Assessment In Beams Using Experimental Natural Frequencies, Frances K. Durham Jun 2005

Internal Damage Detection And Assessment In Beams Using Experimental Natural Frequencies, Frances K. Durham

Theses and Dissertations

This study investigated the frequency response of a cantilever beam with the intent of establishing a reliable nondestructive method of damage detection. The test specimens were 12 aluminum 2024 T3 beams, each identical except for a unique, eccentrically located notch, and one reference notchless beam. The machined notches varied in length and location to simulate varying degrees of damage. Laser doppler vibrometry enabled the data acquisition. The changes in natural frequencies were correlated to notch length and notch location. A comparison of eccentric and centered notch influence on the natural frequencies also is discussed.


Mechanical Behavior Of Cracked Panels Repaired With Bonded Composite Patch, Michael A. Hansen Jun 2005

Mechanical Behavior Of Cracked Panels Repaired With Bonded Composite Patch, Michael A. Hansen

Theses and Dissertations

This research focuses on investigating the mechanical behavior of cracked aluminum panels repaired with bonded boron/epoxy composite patches. The effects of crack initiation and growth on the residual strength of the repaired panels are characterized. This research establishes a correlation between damage modes, residual strength and evolution of strain within as well as outside the patch. Monotonic tensile tests on specimens with a perfectly bonded patch were used to determine the base line strength. Likewise, fatigue tests on specimens with a perfectly bonded patch served to establish baseline fatigue life. In addition, several specimens with a perfectly bonded patch were …


Residual Stress Characterization In Structural Materials By Destructive And Nondestructive Techniques, Ajit K. Roy, Anand Venkatesh, Vikram Marthandam, Satish Dronavalli, Douglas P. Wells, Ronald Rogge Apr 2005

Residual Stress Characterization In Structural Materials By Destructive And Nondestructive Techniques, Ajit K. Roy, Anand Venkatesh, Vikram Marthandam, Satish Dronavalli, Douglas P. Wells, Ronald Rogge

Mechanical Engineering Faculty Research

Transmutation of nuclear waste is currently being considered to transform long-lived isotopes to species with relatively short half-lives and reduced radioactivity through capture and decay of minor actinides and fission products. This process is intended for geologic disposal of spent nuclear fuels for shorter durations in the proposed Yucca Mountain repository. The molten lead-bismuth-eutectic will be used as a target and coolant during transmutation, which will be contained in a subsystem vessel made from materials such as austenitic (304L) and martensitic (EP-823 and HT-9) stainless steels. The structural materials used in this vessel will be subjected to welding operations and …


Tensile Stress Rupture Behavior Of A Woven Ceramic Matrix Composite In Humid Environments At Intermediate Temperature, Kevin J. Larochelle Mar 2005

Tensile Stress Rupture Behavior Of A Woven Ceramic Matrix Composite In Humid Environments At Intermediate Temperature, Kevin J. Larochelle

Theses and Dissertations

Stress rupture tests on the SylramicTM fiber with an in-situ layer of boron nitride, boron nitride interphase, and SiC matrix ceramic matrix composite were performed at 550°C and 750°C with 0.0, 0.2, or 0.6 atm partial pressure of water vapor, pH2O. The 550°C, 100-hr strengths were 75%, 65% and 51% of the monotonic room temperature tensile strength, respectively. At 750°C, the strengths were 67%, 51%, and 49%, respectively. Field Emission Scanning Electron Microscopy analysis estimated the total embrittlement times for 550°C with 0.0, 0.2, and 0.6 atm pH2O were >63 hrs, >38 hrs, and between …


Stress Corrosion Cracking And Hydrogen Embrittlement Of Martensitic Alloy Ep-823, Mohammad K. Hossain Dec 2004

Stress Corrosion Cracking And Hydrogen Embrittlement Of Martensitic Alloy Ep-823, Mohammad K. Hossain

UNLV Theses, Dissertations, Professional Papers, and Capstones

This investigation is focused on the evaluation of stress corrosion cracking (SCC), localized corrosion, and hydrogen embrittlement (HE) susceptibility of martensitic Alloy EP-823 in neutral and acidic solutions at ambient and elevated temperatures. While no failures were observed in smooth specimens in the neutral solution, failures were noticed in the 90°C acidic solution at constant-load (CL) leading to a threshold stress (O'th) of 102 ksi. The presence of a notch reduced the O'th value to 91 ksi in a similar environment. The ductility (%El and %RA), time-to-failure (TTF), and true failure stress (O'r) were gradually …


Stress Corrosion Cracking Resistance Of Martensitic Stainless Steels For Transmutation Applications, Phani P. Gudipati Dec 2004

Stress Corrosion Cracking Resistance Of Martensitic Stainless Steels For Transmutation Applications, Phani P. Gudipati

UNLV Theses, Dissertations, Professional Papers, and Capstones

The susceptibility of Alloy EP-823 to stress corrosion cracking has been evaluated using smooth and notched cylindrical specimens in neutral and acidic solutions at ambient and elevated temperatures using constant load and slow strain rate testing (SSR) techniques. C-ring and U-bend specimens have also been tested in the acidic solution. The effect of hydrogen on the cracking susceptibility has been evaluated under controlled cathodic potential. While no failures were observed with smooth specimens at constant load, the notched specimens showed failure. The SSR test results indicate that the true failure stress (o'f), time to failure and ductility parameters …


Embrittlement And Localized Corrosion In Alloy Ht-9, Sudheer Sama Aug 2004

Embrittlement And Localized Corrosion In Alloy Ht-9, Sudheer Sama

UNLV Theses, Dissertations, Professional Papers, and Capstones

This investigation is focused on the evaluation of stress corrosion cracking (SCC), hydrogen embrittlement (HE) and localized corrosion susceptibility of Alloy HT -9 in neutral and acidic solutions at 30, 60 and 90°C. Constant-load and slow-strain-rate (SSR) testing techniques were used to evaluate the SCC and HE behavior of this alloy by using smooth and notched tensile specimens. Hydrogen effect on the cracking behavior was evaluated by applying cathodic (negative) potential to the test specimens. Localized corrosion susceptibility was evaluated by cyclic potentiodynamic polarization technique. The results of constant load SCC testing showed a threshold stress at 80% of the …


Reduction Of Thermal Residual Strains In Adhesively Bonded Composite Repairs, Heather R. Crooks Mar 2003

Reduction Of Thermal Residual Strains In Adhesively Bonded Composite Repairs, Heather R. Crooks

Theses and Dissertations

Many military and commercial aircraft are being called upon to fly well beyond their original intended service lives. This has forced the United States Air Force (USAF) to increasingly rely on structural repairs to address fatigue induced damage and to extend aircraft useful life. The focus of this research is the use of a high-strength composite patch technique to repair a fatigue crack on an aluminum aircraft structure. This study investigates the thermal residual strains that occur as a direct result of the coefficient of thermal expansion (CTE) mismatch between the repair patch and the underlying cracked metallic structure to …


Finite Element Analysis Of A Composite Cylindrical Shell With A Cutout Under A Fatigue Load, Joshua T. Boatwright Mar 2000

Finite Element Analysis Of A Composite Cylindrical Shell With A Cutout Under A Fatigue Load, Joshua T. Boatwright

Theses and Dissertations

A higher-order shell theory is used to analyze compressive and tensile loads on a graphite/epoxy laminated cylinder containing a square cutout. The Hashin failure criterion is used to determine failure in the fiber, matrix, or lamination. Once failure occurs, the appropriate stiffness terms are reduced. This failure causes a redistribution of stress, leading to further failure. In order to account for the loss of residual strength due to cyclic loading, the stiffness matrix is further reduced at each new increment of load or displacement. The objective is not to determine the S-N curve for the material, but rather to determine …


Nonlinear Geometric And Material Behavior Of Composite Shells With Large Strains, Scott A. Schimmels Aug 1995

Nonlinear Geometric And Material Behavior Of Composite Shells With Large Strains, Scott A. Schimmels

Theses and Dissertations

A two-dimensional, geometrically and materially nonlinear shell theory applicable to arbitrary geometries described by orthogonal curvilinear coordinates and encompassing large displacements, moderate rotations for large strain situations has been developed. Additionally, the theory includes Jacobian transformation matrices, based upon displacement parameters, for the Cauchy - 2nd Piola-Kirchhoff stress-state and the Cauchy (Almansi) - Green strain-state transformations, and a layered material approach is included for the elastoplastic analysis to allow for variation of plasticity through-the-thickness. Doubly curved 20, 28, and 36 degree-of-freedom finite elements are defined based on specialization of the theory to spherical coordinates. The computer program includes algorithms for …