Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Engineering

Development Of A 3d Printed Conductive Biopolymer For Cardiac Tissue Engineering, Britanny Lizeth Stark Dec 2023

Development Of A 3d Printed Conductive Biopolymer For Cardiac Tissue Engineering, Britanny Lizeth Stark

Open Access Theses & Dissertations

Cardiovascular disease (CVD) is the leading cause of death in the US, with approximately 859,000 deaths each year. The major contributor to CVD is Acute Myocardial Infarction (AMI), which causes the death of approximately 25% of the cardiomyocytes present in the left ventricle of the heart. After AMI, the adult human heart has a very limited regenerative capacity. Moreover, the electrical propagation of the myocardium is severely disrupted, making the heart more susceptible to failure and patient death. However, current pharmacological treatments do not address the loss of cardiomyocytes and the disruption of electrical propagation in the heart. Tissue engineering …


Analyzing The Effects Of Ultrafast Laser Processing On Mechanical Properties Of 3d-Printed Pla Parts, Darshan Pramodbhai Yadav Dec 2023

Analyzing The Effects Of Ultrafast Laser Processing On Mechanical Properties Of 3d-Printed Pla Parts, Darshan Pramodbhai Yadav

Theses and Dissertations

Recent advances in additive manufacturing technologies have already led to wide-scale adoption of 3D-printed parts in various industries. The expansion in choice of materials that can be processed, particularly using Fused Deposition Modeling (FDM), and the steady advancements in dimensional accuracy control have extended the range of applications far beyond rapid prototyping. However, additive manufacturing still has considerable limitations compared to traditional and subtractive manufacturing processes. This work addresses limitations associated with the as-deposited surface roughness of 3D-printed parts. The effects of roughness-induced stress concentrations were studied on ultimate tensile strength and fatigue life. The samples were manufactured using a …


Rational Design Of Flexible And Stretchable Electronics Based On 3d Printing, Yuanhang Yang Jan 2022

Rational Design Of Flexible And Stretchable Electronics Based On 3d Printing, Yuanhang Yang

Theses and Dissertations

Flexible and stretchable electronics have been considered as the key component for the next generation of flexible devices. There are many approaches to prepare the devices, such as dip coating, spin coating, Mayer bar coating, filtration and transfer, and printing, etc. The effectiveness of these methods has been proven, but some drawbacks cannot be ignored, such as lacking pattern control, labor consuming, requiring complex pretreatment, wasting conductive materials, etc.

In this investigation, we propose to adopt 3D printing technology to design flexible and stretchable electronics. The objective is to rationally design flexible and stretchable sensors, simplify the preparation process, form …


Recycled Printer Filament, Charlotte Hyland, Troy D. Molinar Jan 2022

Recycled Printer Filament, Charlotte Hyland, Troy D. Molinar

Williams Honors College, Honors Research Projects

The purpose of this research is to examine the effects of recycling PLA filament for 3D printing on its material properties. After examining these effects, PLA and carbon fiber additives were mixed with recycled PLA pellets in different ratios to attempt to regain material properties lost in the recycling process. To complete these findings, an experiment was design and executed.

The research found that tensile strength during multiple iterations of recycling remained mostly unaffected, however, the strain degraded exponentially. In the PLA additive study, high ratios of PLA additive were able to increase the strength and strain properties of the …


Leveraging Biomimicry And Additive Manufacturing To Improve Load Transfer In Brittle Materials, Ana Paula Bernardo Dec 2020

Leveraging Biomimicry And Additive Manufacturing To Improve Load Transfer In Brittle Materials, Ana Paula Bernardo

Graduate Theses and Dissertations

With the emergence of Additive Manufacturing (i.e., 3D printing) in construction, new strategically designed shapes can be created to improve load transfer through structural members and foundations. Cross-sections can be optimized to carry load using less material, or even using weaker constituent materials, like soils, which are cheap and abundant. The goal of this research is to investigate the benefits of using cellular patterns which leverage biomimicry in civil engineering applications, since nature has perfectly engineered materials and patterns which carry loads with the least amount of material possible. Most of the periodic cellular work to date has focused on …


Synthesis And Characterization Of Material Systems For 3d Printed Smart Structures, Hilda Fontes Jan 2020

Synthesis And Characterization Of Material Systems For 3d Printed Smart Structures, Hilda Fontes

Open Access Theses & Dissertations

The silica hollow spheres have demonstrated excellent results in multiple applications such as light-weight composites, and optical applications as a glass coating. This material also exhibits excellent thermal, shock impact, and hydrophilic properties extremely useful for industrial applications. However, a controllable size of the particle is desired to further increase the number of applications of the silica hollow spheres.

This Thesis aims a method to fabricate silica hollow spheres in a single step with a controlled diameter size. A study was developed to demonstrate the particle size change when adjusting the molecular weight of the medium by using different alcohol …


Modeling And Validations Of Control Parameters For Material Extrusion-Based Additive Manufacturing Of Thixotropic Aluminum Alloys., Lars Herhold Aug 2018

Modeling And Validations Of Control Parameters For Material Extrusion-Based Additive Manufacturing Of Thixotropic Aluminum Alloys., Lars Herhold

Electronic Theses and Dissertations

Additive Manufacturing (AM) with metals has been accomplished mainly through powder bed fusion processes. Initial experiments and simulations using Material Extrusion Additive Manufacturing (MEAM) have been performed by various researchers especially using low melting alloys. Recently Stratasys Inc. submitted a patent application for the use of their Material Extrusion technology also called Fused Deposition Modeling (FDM) where they describe the process using thixotropic semi-solid alloys. Currently this process using semi-solid, engineering type alloys such as A356 or THIXALLOY 540 aluminum have not been researched to evaluate the control parameters. This research combines the in-depth knowledge of applying thixotropic semi-solid aluminum …


Consuming Digital Debris In The Plasticene, Stephen R. Parks Jan 2018

Consuming Digital Debris In The Plasticene, Stephen R. Parks

Theses and Dissertations

Claims of customization and control by socio-technical industries are altering the role of consumer and producer. These narratives are often misleading attempts to engage consumers with new forms of technology. By addressing capitalist intent, material, and the reproduction limits of 3-D printed objects’, I observe the aspirational promise of becoming a producer of my own belongings through new networks of production. I am interested in gaining a better understanding of the data consumed that perpetuates hyper-consumptive tendencies for new technological apparatuses. My role as a designer focuses on the resolution of not only the surface of the object through 3-D …


On Demand 3d Printed Hybrid Scaffolds For Tissue Engineering Applications, Ivan D. Hernandez Jan 2017

On Demand 3d Printed Hybrid Scaffolds For Tissue Engineering Applications, Ivan D. Hernandez

Open Access Theses & Dissertations

A composite 3D printed polymer scaffold with inbuilt porosity and filled with a hydrogel can provide an ideal support system for cell growth, proliferation, and vascularization. Therefore, a hybrid system of 3D printed polycaprolactone (PCL) scaffold and a hydroxyapatite-based hydrogel was developed for application in the reconstruction of bone defects, which are inherently difficult to repair without any guided therapies. In the present study, a 3D printed gyroid structure of PCL allowed the loading of a higher amount of hydrogel as compared to conventionally used 3D printed mesh structure of the same volume and strut thickness. The hydrogel was composed …