Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Mechanics of Materials

2022

Institution
Keyword
Publication
Publication Type

Articles 1 - 30 of 98

Full-Text Articles in Engineering

Phase-Averaged, Frequency Dependence Of Jet Dynamics In A Scaled Up Vocal Fold Model With Full And Incomplete Closure, Nathaniel Wei, Abigail Haworth, Hunter Ringenberg, Michael Krane, Timothy Wei Dec 2022

Phase-Averaged, Frequency Dependence Of Jet Dynamics In A Scaled Up Vocal Fold Model With Full And Incomplete Closure, Nathaniel Wei, Abigail Haworth, Hunter Ringenberg, Michael Krane, Timothy Wei

Department of Mechanical and Materials Engineering: Faculty Publications

This study focuses on frequency dependence effects on glottal jet dynamics with a focus on the physiological condition in which the vocal folds do not fully close. Incomplete closure occurs naturally in children and adult females. But there are also pathological conditions that can be problematic. Experiments were conducted using a 10× scaled-up model in a free surface water tunnel. Two-dimensional vocal fold models with semicircular medial surfaces were stepper motor driven inside a square duct with constant opening and closing speeds. Cases with complete vocal fold closure and incomplete closure to only 15% of the maximum gap were examined. …


Sars-Cov-2 Detecting Rapid Metasurface-Based Sensor, Shobhit K. Patel, Jaymit Surve, Juveriya Parmar, Khaled Aliqab, Meshari Alsharari, Ammar Armghan Dec 2022

Sars-Cov-2 Detecting Rapid Metasurface-Based Sensor, Shobhit K. Patel, Jaymit Surve, Juveriya Parmar, Khaled Aliqab, Meshari Alsharari, Ammar Armghan

Department of Mechanical and Materials Engineering: Faculty Publications

We have proposed a novel approach to detect COVID-19 by detecting the ethyl butanoate which high volume ratio is present in the exhaled breath of a COVID-19 infected person. We have employed a refractive index sensor (RIS) with the help of a metasurface-based slotted T-shape perfect absorber that can detect ethyl butanoate present in exhaled breath of COVID-19 infected person with high sensitivity and in-process SARS-CoV-2. The optimized structure of the sensor is obtained by varying several structure parameters including structure length and thickness, slotted T-shape resonator length, width, and thickness. Sensor’s performance is evaluated based on numerous factors comprising …


Nanoscale Imaging Of Antiferromagnetic Domains In Epitaxial Films Of Cr2O3 Via Scanning Diamond Magnetic Probe Microscopy, Adam Erickson, Syed Qamar Abbas Shah, Ather Mahmood, Ilja Fescenko, Christian H. Binek, Adbelghani Laraoui Dec 2022

Nanoscale Imaging Of Antiferromagnetic Domains In Epitaxial Films Of Cr2O3 Via Scanning Diamond Magnetic Probe Microscopy, Adam Erickson, Syed Qamar Abbas Shah, Ather Mahmood, Ilja Fescenko, Christian H. Binek, Adbelghani Laraoui

Department of Mechanical and Materials Engineering: Faculty Publications

We report direct imaging of boundary magnetization associated with antiferromagnetic domains in magnetoelectric epitaxial Cr2O3 thin films using diamond nitrogen vacancy microscopy. We found a correlation between magnetic domain size and structural grain size which we associate with the domain formation process. We performed field cooling, i.e., cooling from above to below the Néel temperature in the presence of a magnetic field, which resulted in the selection of one of the two otherwise degenerate 180° domains. Lifting of such a degeneracy is achievable with a magnetic field alone due to the Zeeman energy of a weak …


Sulfonated Styrene Grafted Sebs/Abs Made By Additive Manufacturing For Ion Exchange Applications, Avianna Elaine Gallegos Dec 2022

Sulfonated Styrene Grafted Sebs/Abs Made By Additive Manufacturing For Ion Exchange Applications, Avianna Elaine Gallegos

Open Access Theses & Dissertations

An interpenetrating polymer network (IPN) for cation exchange applications was synthesized from a blend of styrene-ethylene/butylene-styrene (SEBS) and acrylonitrile butadiene styrene (ABS), which was 3D printed, grafted with crosslinked polystyrene (PS), and sulfonated. A method for styrene grafting was applied to reduce the damage to polymer phases caused by the sulfonation reaction. Styrene and divinylbenzene monomers were introduced to the IPN and induced with heat treatment to polymerize in situ. The graft copolymerization reaction was enhanced with varying quantities of benzoyl peroxide as a chemical initiator. The samples were subsequently sulfonated with chlorosulfonic acid in dichloroethane and functionalized for ion …


Fabrication, Microstructure And Mechanical Characterization Of Crvnbtaw High Entropy Alloy Coatings Using Magnetron Sputtering, Jorge Quezada Dec 2022

Fabrication, Microstructure And Mechanical Characterization Of Crvnbtaw High Entropy Alloy Coatings Using Magnetron Sputtering, Jorge Quezada

Open Access Theses & Dissertations

In this project a CrVNbTaW high entropy alloy was evaluated. The samples were made using radio frequency magnetron sputtering and were made under similar conditions. The deposition parameters were explored to find the ideal deposition process. The process included a pressure from 0.1-2mTorr, 600C, 1 hour duration, at 100W power to guns, and constant argon flow. The samples were fabricated under similar parameters using silicon steel and sapphire substrates. The samples were analyzed and characterized using X-ray diffraction, scanning electron microscopy, atomic force microscopy, nanoindentation and corrosion testing. Based on these results we were able to get a better understanding …


Fabrication, Thermophysical, And Mechanical Properties Of Cermet And Cercer Fuel Composites For Nuclear Thermal Propulsion, Neal D. Gaffin Dec 2022

Fabrication, Thermophysical, And Mechanical Properties Of Cermet And Cercer Fuel Composites For Nuclear Thermal Propulsion, Neal D. Gaffin

Doctoral Dissertations

Nuclear thermal propulsion (NTP) utilizes nuclear fission to double the efficiency of
in-space propulsion systems compared with traditional combustion rocket systems.
NTP systems are limited primarily by the fuel material choice, due to the extreme
conditions they will need to endure, including temperatures up to 3000 K, multiple
thermal cycles with rapid heating and cooling, exposure to hot flowing hydrogen,
large thermal gradients, and high neutron flux. Particle based fuels, namely ceramic-
metallic (cermet) and ceramic-ceramic (cercer) composites are both promising fuel
element material candidates for NTP. Given the high temperature nature, these
materials are difficult to fabricate and very …


Using Ultrasonication For The Improvement Of Grade And Recovery In Molybdenum Sulfide Flotation, Wayne Alexander Campbell Dec 2022

Using Ultrasonication For The Improvement Of Grade And Recovery In Molybdenum Sulfide Flotation, Wayne Alexander Campbell

Open Access Theses & Dissertations

Experimentation was performed on molybdenite slurry by using ultrasonication to elucidate the effects of ultrasonic-induced bubble cavitation on the grade, recovery, and gangue reduction during small-scale flotation tests and was followed by a topographical analysis of quartz particles using SEM. Ultrasonic waves at 20-80 kHz that propagate through a liquid medium cause microbubbles to form, grow, and implode. The cavitation bubble's implosion causes brief extreme local conditions where temperatures can reach 5,000 K and pressures of 1,000 bar. The resulting microjets create mechanical and chemical changes to the system and were directed at improving flotation dynamics in these experiments. Through …


Nano-Engineered Soft Magnets: Potential Application In Water Treatment, Hyperthermia And Molecular (Organic) Magnets, Yohannes Weldemariam Getahun Dec 2022

Nano-Engineered Soft Magnets: Potential Application In Water Treatment, Hyperthermia And Molecular (Organic) Magnets, Yohannes Weldemariam Getahun

Open Access Theses & Dissertations

Scrutinizing the remarkable and tunable properties of magnetic materials at a nanoscale size "There's Plenty of Room at the Bottom..." Richard Feynman, this study attempts to find sustainable solutions to some of the deteriorating environmental, health, and energy problems the world is encountering. Due to their simple preparation, surface adaptability, and tunable magnetic and optical properties, magnetic nanoparticles have been extensively investigated in water treatment, cancer therapy, data storage, and more. However, relying on non-reusable and chemical-based treatment agents in water, complex and costly cancer treatment procedures and molecular magnets that operate far below room temperature limited those attempts from …


The Qualification Of Sealability And Creep Relaxation Of Additively Manufactured Zytel Gaskets For Pem Fuel Cells, Robert Lazarin Dec 2022

The Qualification Of Sealability And Creep Relaxation Of Additively Manufactured Zytel Gaskets For Pem Fuel Cells, Robert Lazarin

Open Access Theses & Dissertations

The purpose of this thesis is to study the feasibility of low-cost additive manufacturing of gaskets for proton exchange membrane fuel cells exposed to extreme temperature conditions ranging from -55°C to 100°C. With the growing popularity and decreasing costs of additive manufacturing technologies, specifically Material Extrusion (ME), research is being conducted to determine the feasibility of ME components. Thermally cycled PEMFCs may exhibit accelerated gasket deterioration, therefore, the mechanical stability of material extruded gaskets following a harsh thermal cycle must be assessed. The feasibility of the material extruded gaskets will be proven by manufacturing optimization and mechanical testing. The target …


Magnetic Structures Of Sawtooth Olivines Mn2six 4 (X = S, Se) Determined Through Neutron Powder Diffraction, Melaku Sisay Tafere Dec 2022

Magnetic Structures Of Sawtooth Olivines Mn2six 4 (X = S, Se) Determined Through Neutron Powder Diffraction, Melaku Sisay Tafere

Open Access Theses & Dissertations

In olivine chalcogenide Mn2SiX 4 (X = S, Se) compounds, the Mn lattice produces a sawtooth, which is of critical significance in magnetism due to the potential for manifesting at bands in the magnon spectrum, a crucial component in magnonics. The compounds Mn2SiS4 and Mn2SiSe4 in Mn2SiX 4 family undergo antiferromagnetic phase transitions at T â?? 85 K and â?? 66 K, respectively, as determined from the specific heat, Cp(T). The average and local crystal structuresare determined using synchrotron X-ray, neutron diffraction, and X-ray total scattering data followed by Rietveld and pair distribution function (PDF) analysis. It is found from …


A Comparative Evaluation Of Oxidation And Combustion Phenomena In Ti-6al-4v Exposed To Earth Re-Entry And Arc-Jet Test Environments, Arlene Smith Dec 2022

A Comparative Evaluation Of Oxidation And Combustion Phenomena In Ti-6al-4v Exposed To Earth Re-Entry And Arc-Jet Test Environments, Arlene Smith

Open Access Theses & Dissertations

The Ti-6Al-4V alloy is widely used in aerospace applications for its beneficial combination of properties. However, this alloy has high solubility for oxygen and thus a high reactivity. Recovered data contained within the Columbia artifacts suggests that this alloy underwent an accelerated degradation and combustion reaction when exposed to the high enthalpy, low-pressure surroundings experienced during reentry into Earth's atmosphere. Arc-jet testing has provided a simulated aerothermodynamic heating environment to mimic what the spacecraft endured. When the effect of thermal alteration on this alpha-beta phase alloy was investigated during previous studies, optical metallography and microhardness tests revealed inconsistencies between samples …


Novel Interlaminar Reinforcement To Enhance The Impact Damage Resistance Of Carbon Fiber-Reinforced Polymer Matrix Composites, Daisy Haidee Mariscal Dec 2022

Novel Interlaminar Reinforcement To Enhance The Impact Damage Resistance Of Carbon Fiber-Reinforced Polymer Matrix Composites, Daisy Haidee Mariscal

Open Access Theses & Dissertations

Aerospace, aircraft, marine, and automobile applications are increasingly using composite materials for lighter, higher stiffness, and strength properties. Despite these advantages, composite materials have one major disadvantage. The through-thickness properties are extremely weak when subjected to impact damage. When a composite material is subjected to a low-velocity impact, there is hardly any visible damage on the surface compromising the composite material internally without any external notice. Internal damage may be delamination, which is the most common, matrix cracking, and fiber breakage. A composite material is made up of layers of fiber. The interlaminar region is located in between these layers. …


Laser Powder Bed Fusion Process, Structure, And Properties: Holistic Approach To Establishing Metallurgical Quality, Hunter Taylor Dec 2022

Laser Powder Bed Fusion Process, Structure, And Properties: Holistic Approach To Establishing Metallurgical Quality, Hunter Taylor

Open Access Theses & Dissertations

The advent of metal additive manufacturing (AM) was posed as a disruption to casting, forging, machining, and forming with the notion "complexity is free". However, since invention in the late 1990's the marketed potential has not been realized. Metal based AM is best viewed from the process-structure-properties-performance (PSPP) paradigm taught in material science and engineering, which links the process history to the part performance. Understanding the complex and localized process control made available by AM creates a significant challenge in defining the materials structure, properties, and performance. The lack of holistic understating of inputs and corresponding results has been identified …


High Throughput And Highly Controllable Methods For In Vitro Intracellular Delivery, Justin Brooks, Grayson Minnick, Prithvijit Mukherjee, Arian Jaberi, Lingqian Chang, Horacio D. Espinosa, Ruiguo Yang Dec 2022

High Throughput And Highly Controllable Methods For In Vitro Intracellular Delivery, Justin Brooks, Grayson Minnick, Prithvijit Mukherjee, Arian Jaberi, Lingqian Chang, Horacio D. Espinosa, Ruiguo Yang

Department of Mechanical and Materials Engineering: Faculty Publications

In vitro and ex vivo intracellular delivery methods hold the key for releasing the full potential of tissue engineering, drug development, and many other applications. In recent years, there has been significant progress in the design and implementation of intracellular delivery systems capable of delivery at the same scale as viral transfection and bulk electroporation but offering fewer adverse outcomes. This review strives to examine a variety of methods for in vitro and ex vivo intracellular delivery such as flow-through microfluidics, engineered substrates, and automated probe-based systems from the perspective of throughput and control. Special attention is paid to a …


Efects Of Non‑Newtonian Viscosity On Arterial And Venous Fow And Transport, Sabrina Lynch, Nitesh Nama, C Alberto Figueroa Nov 2022

Efects Of Non‑Newtonian Viscosity On Arterial And Venous Fow And Transport, Sabrina Lynch, Nitesh Nama, C Alberto Figueroa

Department of Mechanical and Materials Engineering: Faculty Publications

It is well known that blood exhibits non-Newtonian viscosity, but it is generally modeled as a Newtonian fluid. However, in situations of low shear rate, the validity of the Newtonian assumption is questionable. In this study, we investigated differences between Newtonian and non-Newtonian hemodynamic metrics such as velocity, vorticity, and wall shear stress. In addition, we investigated cardiovascular transport using two different approaches, Eulerian mass transport and Lagrangian particle tracking. Non-Newtonian solutions revealed important differences in both hemodynamic and transport metrics relative to the Newtonian model. Most notably for the hemodynamic metrics, in-plane velocity and vorticity were consistently larger in …


Enhanced Electron Correlation And Significantly Suppressed Thermal Conductivity In Dirac Nodal-Line Metal Nanowires By Chemical Doping, Amanda L. Coughlin, Zhiliang Pan, Jeonghoon Hong, Tongxie Zhang, Xun Zhan, Wenqian Wu, Dongyue Xie, Tian Tong, Thomas Ruch, Jean J. Heremans, Jiming Bao, Herbert A. Fertig, Jian Wang, Jeongwoo Kim, Hanyu Zhu, Deyu Li, Shixiong Zhang Nov 2022

Enhanced Electron Correlation And Significantly Suppressed Thermal Conductivity In Dirac Nodal-Line Metal Nanowires By Chemical Doping, Amanda L. Coughlin, Zhiliang Pan, Jeonghoon Hong, Tongxie Zhang, Xun Zhan, Wenqian Wu, Dongyue Xie, Tian Tong, Thomas Ruch, Jean J. Heremans, Jiming Bao, Herbert A. Fertig, Jian Wang, Jeongwoo Kim, Hanyu Zhu, Deyu Li, Shixiong Zhang

Department of Mechanical and Materials Engineering: Faculty Publications

Enhancing electron correlation in a weakly interacting topological system has great potential to promote correlated topological states of matter with extraordinary quantum properties. Here, the enhancement of electron correlation in a prototypical topological metal, namely iridium dioxide (IrO2), via doping with 3d transition metal vanadium is demonstrated. Single-crystalline vanadium-doped IrO2 nanowires are synthesized through chemical vapor deposition where the nanowire yield and morphology are improved by creating rough surfaces on substrates. Vanadium doping leads to a dramatic decrease in Raman intensity without notable peak broadening, signifying the enhancement of electron correlation. The enhanced electron correlation is further …


Exosomes Derived From Differentiated Human Admsc With The Schwann Cell Phenotype Modulate Peripheral Nerve-Related Cellular Functions, Bo Liu, Yunfan Kong, Wen Shi, Mitchell Kuss, Ke Liao, Guoku Hu, Peng Xiao, Jagadesan Sankarasubramanian, Chittibabu Guda, Xinglong Wang, Yuguo Lei, Bin Duan Nov 2022

Exosomes Derived From Differentiated Human Admsc With The Schwann Cell Phenotype Modulate Peripheral Nerve-Related Cellular Functions, Bo Liu, Yunfan Kong, Wen Shi, Mitchell Kuss, Ke Liao, Guoku Hu, Peng Xiao, Jagadesan Sankarasubramanian, Chittibabu Guda, Xinglong Wang, Yuguo Lei, Bin Duan

Department of Mechanical and Materials Engineering: Faculty Publications

Peripheral nerve regeneration remains a significant clinical challenge due to the unsatisfactory functional recovery and public health burden. Exosomes, especially those derived from mesenchymal stem cells (MSCs), are promising as potential cell-free therapeutics and gene therapy vehicles for promoting neural regeneration. In this study, we reported the differentiation of human adipose derived MSCs (hADMSCs) towards the Schwann cell (SC) phenotype (hADMSC-SCs) and then isolated exosomes from hADMSCs with and without differentiation (i.e., dExo vs uExo). We assessed and compared the effects of uExo and dExo on antioxidative, angiogenic, antiinflammatory, and axon growth promoting properties by using various peripheral nerve-related cells. …


Designing And Cnc Machine Valve Sub-Plates And Quick Mounts For Hydraulic Power Training Systems, Connor Maxam Nov 2022

Designing And Cnc Machine Valve Sub-Plates And Quick Mounts For Hydraulic Power Training Systems, Connor Maxam

Morehead State Theses and Dissertations

A thesis presented to the faculty of the College of Business and Technology at Morehead State University in partial fulfillment of the requirements for the Degree of Master of Science by Connor Maxam on November 22, 2022.


Phase Space Analysis Of Nonlinear Wave Propagation In A Bistable Mechanical Metamaterial With A Defect, Mohammed A. Mohammed, Piyush Grover Nov 2022

Phase Space Analysis Of Nonlinear Wave Propagation In A Bistable Mechanical Metamaterial With A Defect, Mohammed A. Mohammed, Piyush Grover

Department of Mechanical and Materials Engineering: Faculty Publications

We study the dynamics of solitary waves traveling in a one-dimensional chain of bistable elements in the presence of a local inhomogeneity (“defect”). Numerical simulations reveal that depending upon its initial speed, an incoming solitary wave can get transmitted, captured, or reflected upon interaction with the defect. The dynamics are dominated by energy exchange between the wave and a breather mode localized at the defect. We derive a reduced-order two degree of freedom Hamiltonian model for wave-breather interaction and analyze it using dynamical systems techniques. Lobe dynamics analysis reveals the fine structure of phase space that leads to the complicated …


Feedforward Control Of Thermal History In Laser Powder Bed Fusion: Toward Physics-Based Optimization Of Processing Parameters, Alex Riensche, Benjamin D. Bevans, Ziyad M. Smoqi, Reza Yavari, Ajay Krishnan, Josie Gilligan, Nicholas Piercy, Kevin D. Cole, Prahalada K. Rao Nov 2022

Feedforward Control Of Thermal History In Laser Powder Bed Fusion: Toward Physics-Based Optimization Of Processing Parameters, Alex Riensche, Benjamin D. Bevans, Ziyad M. Smoqi, Reza Yavari, Ajay Krishnan, Josie Gilligan, Nicholas Piercy, Kevin D. Cole, Prahalada K. Rao

Department of Mechanical and Materials Engineering: Faculty Publications

We developed and applied a model-driven feedforward control approach to mitigate thermal-induced flaw formation in laser powder bed fusion (LPBF) additive manufacturing process. The key idea was to avert heat buildup in a LPBF part before it is printed by adapting process parameters layer-by-layer based on insights from a physics-based thermal simulation model. The motivation being to replace cumbersome empirical build-and-test parameter optimization with a physics-guided strategy. The approach consisted of three steps: prediction, analysis, and correction. First, the temperature distribution of a part was predicted rapidly using a graph theory-based computational thermal model. Second, the model-derived thermal trends were …


Adiabatic Shear Banding In Nickel And Nickel-Based Superalloys: A Review, Russell A. Rowe, Paul G. Allison, Anthony N. Palazotto, Keivan Davami Nov 2022

Adiabatic Shear Banding In Nickel And Nickel-Based Superalloys: A Review, Russell A. Rowe, Paul G. Allison, Anthony N. Palazotto, Keivan Davami

Faculty Publications

This review paper discusses the formation and propagation of adiabatic shear bands in nickel-based superalloys. The formation of adiabatic shear bands (ASBs) is a unique dynamic phenomenon that typically precedes catastrophic, unpredicted failure in many metals under impact or ballistic loading. ASBs are thin regions that undergo substantial plastic shear strain and material softening due to the thermo-mechanical instability induced by the competitive work hardening and thermal softening processes. Dynamic recrystallization of the material’s microstructure in the shear region can occur and encourages shear localization and the formation of ASBs. Phase transformations are also often seen in ASBs of ferrous …


The Design And Manufacturing Of An Environmental Chamber To Test Microelectronic Devices, William Graber, Aniket Roy Chowdhury Nov 2022

The Design And Manufacturing Of An Environmental Chamber To Test Microelectronic Devices, William Graber, Aniket Roy Chowdhury

The Journal of Purdue Undergraduate Research

No abstract provided.


A Method Of Assessing Peripheral Stent Abrasiveness Under Cyclic Deformations Experienced During Limb Movement, Courtney Keiser, Kaspars Maleckis, Pauline Struczewska, Majid Jadidi, Jason N. Mactaggart, Alexey Kamenskiy Nov 2022

A Method Of Assessing Peripheral Stent Abrasiveness Under Cyclic Deformations Experienced During Limb Movement, Courtney Keiser, Kaspars Maleckis, Pauline Struczewska, Majid Jadidi, Jason N. Mactaggart, Alexey Kamenskiy

Department of Mechanical and Materials Engineering: Faculty Publications

Poor outcomes of peripheral arterial disease stenting are often attributed to the inability of stents to accommodate the complex biomechanics of the flexed lower limb. Abrasion damage caused by rubbing of the stent against the artery wall during limb movement plays a significant role in reconstruction failure but has not been characterized. Our goals were to develop a method of assessing the abrasiveness of peripheral nitinol stents and apply it to several commercial devices. Misago, AbsolutePro, Innova, Zilver, SmartControl, SmartFlex, and Supera stents were deployed inside electrospun nanofibrillar tubes with femoropopliteal artery-mimicking mechanical properties and subjected to cyclic axial compression …


Revealing The Pulse-Induced Electroplasticity By Decoupling Electron Wind Force, Xing Li, Qi Zhu, Youran Hong, He Zheng, Jian Wang, Jiangwei Wang, Ze Zhang Oct 2022

Revealing The Pulse-Induced Electroplasticity By Decoupling Electron Wind Force, Xing Li, Qi Zhu, Youran Hong, He Zheng, Jian Wang, Jiangwei Wang, Ze Zhang

Department of Mechanical and Materials Engineering: Faculty Publications

Micro/nano electromechanical systems and nanodevices often suffer from degradation under electrical pulse. However, the origin of pulse-induced degradation remains an open question. Herein, we investigate the defect dynamics in Au nanocrystals under pulse conditions. By decoupling the electron wind force via a properly-designed in situ TEM electropulsing experiment, we reveal a non-directional migration of Σ3{112} incoherent twin boundary upon electropulsing, in contrast to the expected directional migration under electron wind force. Quantitative analyses demonstrate that such exceptional incoherent twin boundary migration is governed by the electron-dislocation interaction that enhances the atom vibration at dislocation cores, rather than driven by the …


Highly Efficient, Perfect, Large Angular And Ultrawideband Solar Energy Absorber For Uv To Mir Range, Shobhit K. Patel, Arun Kumar Udayakumar, G. Mahendran, B. Vasudevan, Jaymit Surve, Juveriya Parmar Oct 2022

Highly Efficient, Perfect, Large Angular And Ultrawideband Solar Energy Absorber For Uv To Mir Range, Shobhit K. Patel, Arun Kumar Udayakumar, G. Mahendran, B. Vasudevan, Jaymit Surve, Juveriya Parmar

Department of Mechanical and Materials Engineering: Faculty Publications

Although different materials and designs have been tried in search of the ideal as well as ultrawideband light absorber, achieving ultra-broadband and robust unpolarized light absorption over a wide angular range has proven to be a major issue. Light-field regulation capabilities provided by optical metamaterials are a potential new technique for perfect absorbers. It is our goal to design and demonstrate an ultra-wideband solar absorber for the ultraviolet to a mid-infrared region that has an absorptivity of TE/TM light of 96.2% on average. In the visible, NIR, and MIR bands of the solar spectrum, the absorbed energy is determined to …


Finite Element-Based Machine Learning Model For Predicting The Mechanical Properties Of Composite Hydrogels, Yasin Shokrollahi, Pengfei Dong, Peshala T. Gamage, Nashaita Patrawalla, Vipuil Kishore, Hozhabr Mozafari, Linxia Gu Oct 2022

Finite Element-Based Machine Learning Model For Predicting The Mechanical Properties Of Composite Hydrogels, Yasin Shokrollahi, Pengfei Dong, Peshala T. Gamage, Nashaita Patrawalla, Vipuil Kishore, Hozhabr Mozafari, Linxia Gu

Department of Mechanical and Materials Engineering: Faculty Publications

In this study, a finite element (FE)-based machine learning model was developed to predict the mechanical properties of bioglass (BG)-collagen (COL) composite hydrogels. Based on the experimental observation of BG-COL composite hydrogels with scanning electron microscope, 2000 microstructural images with randomly distributed BG particles were created. The BG particles have diameters ranging from 0.5 μm to 1.5 μm and a volume fraction from 17% to 59%. FE simulations of tensile testing were performed for calculating the Young’s modulus and Poisson’s ratio of 2000 microstructures. The microstructural images and the calculated Young’s modulus and Poisson’s ratio by FE simulation were used …


Large Refrigerant Capacity In Superparamagnetic Iron Nanoparticles Embedded In A Thin Film Matrix, Kaushik Sarkar, Surabhi Shaji, Jeffrey E. Shield, Christian H. Binek, Dhananjay Kumar Oct 2022

Large Refrigerant Capacity In Superparamagnetic Iron Nanoparticles Embedded In A Thin Film Matrix, Kaushik Sarkar, Surabhi Shaji, Jeffrey E. Shield, Christian H. Binek, Dhananjay Kumar

Department of Mechanical and Materials Engineering: Faculty Publications

A magnetocaloric effect (MCE) with sizable isothermal entropy change (ΔS) maintained over a broad range of temperatures above the blocking temperature is reported for a rare earth-free superparamagnetic nanoparticle system comprising of Fe–TiN heterostructure. Superparamagnetic iron (Fe) particles were embedded in a titanium nitride (TiN) thin film matrix in a TiN/Fe/TiN multilayered pattern using a pulsed laser deposition method. High angle annular dark-field images in conjunction with dispersive energy analysis, recorded using scanning transmission electron microscopy, show a clear presence of alternating layers of Fe and TiN with a distinct atomic number contrast between Fe particles and TiN. Quantitative information …


A Nanofiber-Embedded Microfluidic Platform For Studying Neurobiology, Donghee Lee, Navatha Shree Sharma, S. M. Shatil Shahriar, Kai Yang, Zheng Yan, Jingwei Xie Oct 2022

A Nanofiber-Embedded Microfluidic Platform For Studying Neurobiology, Donghee Lee, Navatha Shree Sharma, S. M. Shatil Shahriar, Kai Yang, Zheng Yan, Jingwei Xie

Department of Mechanical and Materials Engineering: Faculty Publications

Due to their biomimetic properties, electrospun nanofibers have been widely used in neurobiology studies. However, mechanistic understanding of cell-nanofiber interactions is challenging based on the current in vitro culture systems due to the lack of control of spatiotemporal patterning of cells and difficulty in monitoring single cell behavior. To overcome these issues, we apply microfluidic technology in combination with electrospun nanofibers for in vitro studies of interactions between neurons and nanofiber materials. We demonstrate a unique nanofiber embedded microfluidic device which contains patterned aligned or random electrospun nanofibers as a new culture system. With this device, we test how different …


Preface For Millard Beatty, E. Baesu, Roger Fosdick Oct 2022

Preface For Millard Beatty, E. Baesu, Roger Fosdick

Department of Mechanical and Materials Engineering: Faculty Publications

Professor Beatty has contributed a wide variety of research papers and book articles on topics in finite elasticity, continuum mechanics and classical mechanics, including some fundamental experimental work. His works are clear and informative and expose a didactic quality. In the following, we briefly touch upon some of the highlights of his research involvement throughout the years.


Machine Learning-Based Peripheral Artery Disease Identification Using Laboratory-Based Gait Data, Ali Al-Ramini, Mahdi Hassan, Farahnaz Fallahtafti, Mohammad Ali Takallou, Hafizur Rahman, Basheer Qolomany, Iraklis I. Pipinos, Fadi M. Alsaleem, Sara A. Myers Sep 2022

Machine Learning-Based Peripheral Artery Disease Identification Using Laboratory-Based Gait Data, Ali Al-Ramini, Mahdi Hassan, Farahnaz Fallahtafti, Mohammad Ali Takallou, Hafizur Rahman, Basheer Qolomany, Iraklis I. Pipinos, Fadi M. Alsaleem, Sara A. Myers

Department of Mechanical and Materials Engineering: Faculty Publications

Peripheral artery disease (PAD) manifests from atherosclerosis, which limits blood flow to the legs and causes changes in muscle structure and function, and in gait performance. PAD is underdiagnosed, which delays treatment and worsens clinical outcomes. To overcome this challenge, the purpose of this study is to develop machine learning (ML) models that distinguish individuals with and without PAD. This is the first step to using ML to identify those with PAD risk early. We built ML models based on previously acquired overground walking biomechanics data from patients with PAD and healthy controls. Gait signatures were characterized using ankle, knee, …