Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Mechanics of Materials

2016

Institution
Keyword
Publication
Publication Type

Articles 1 - 30 of 100

Full-Text Articles in Engineering

The Effect Of A Powered Ankle Foot Orthosis On Walking In A Stroke Subject: A Case Study, Ali Pourghasem, Ismail Ebrahimi Takamjani, Mohammad Taghi Karimi, Mohammad Kamali, Mohammad Jannesari, Iman Salafian Dec 2016

The Effect Of A Powered Ankle Foot Orthosis On Walking In A Stroke Subject: A Case Study, Ali Pourghasem, Ismail Ebrahimi Takamjani, Mohammad Taghi Karimi, Mohammad Kamali, Mohammad Jannesari, Iman Salafian

Department of Mechanical and Materials Engineering: Faculty Publications

[Purpose] Standing and walking are impaired in stroke patients. Therefore, assisted devices are required to restore their walking abilities. The ankle foot orthosis with an external powered source is a new type of orthosis. The aim of this study was to evaluate the performance of a powered ankle foot orthosis compared with unpowered orthoses in a stroke patient.

[Subjects and Methods] A single stroke subject participated in this study. The subject was fitted with three types of ankle foot orthosis (powered, posterior leg spring, and carbon ankle foot orthoses). He was asked to walk with and without the three types …


Microstructure Control And Correlation To Creep Properties In Grade 91 Steel Weldment After Thermo-Mechanical Treatments And An Fe-30cr-3al Alloy Strengthened By Fe2nb Laves Phase, Benjamin Allen Shassere Dec 2016

Microstructure Control And Correlation To Creep Properties In Grade 91 Steel Weldment After Thermo-Mechanical Treatments And An Fe-30cr-3al Alloy Strengthened By Fe2nb Laves Phase, Benjamin Allen Shassere

Doctoral Dissertations

Type IV cracking in weldments of steel pipes after creep deformation is a concern in modern fossil-fueled power plants. Two possible methods for minimizing or eliminating Type IV cracking will be discussed. The first method alters the initial microstructure of typical Grade 91 steel base metal before welding, while the second provides baseline microstructure characteristics and creep performance of a new alloy that is strengthened by the intermetallic Fe2Nb Laves phase. The initial microstructure of the Grade 91 steel can be controlled by Thermo-Mechanical Treatments, which aids in precipitation of fine (5-10 nm) MX particles in austenite before transformation to …


Microstructural Analysis Of Thermoelastic Response, Nonlinear Creep, And Pervasive Cracking In Heterogeneous Materials, Alden C. Cook Dec 2016

Microstructural Analysis Of Thermoelastic Response, Nonlinear Creep, And Pervasive Cracking In Heterogeneous Materials, Alden C. Cook

Electronic Theses and Dissertations

This dissertation is concerned with the development of robust numerical solution procedures for the generalized micromechanical analysis of linear and nonlinear constitutive behavior in heterogeneous materials. Although the methods developed are applicable in many engineering, geological, and materials science fields, three main areas are explored in this work. First, a numerical methodology is presented for the thermomechanical analysis of heterogeneous materials with a special focus on real polycrystalline microstructures obtained using electron backscatter diffraction techniques. Asymptotic expansion homogenization and finite element analysis are employed for micromechanical analysis of polycrystalline materials. Effective thermoelastic properties of polycrystalline materials are determined and compared …


Self-Patterning Gd Nano-Fibers In Mg-Gd Alloys, Yangxin Li, Jian Wang, Kaiguo Chen, Meiyue Shao, Yao Shen, Li Jin, Guo-Zhen Zhu Dec 2016

Self-Patterning Gd Nano-Fibers In Mg-Gd Alloys, Yangxin Li, Jian Wang, Kaiguo Chen, Meiyue Shao, Yao Shen, Li Jin, Guo-Zhen Zhu

Department of Mechanical and Materials Engineering: Faculty Publications

Manipulating the shape and distribution of strengthening units, e.g. particles, fibers, and precipitates, in a bulk metal, has been a widely applied strategy of tailoring their mechanical properties. Here, we report self-assembled patterns of Gd nano-fibers in Mg-Gd alloys for the purpose of improving their strength and deformability. 1-nm Gd nano-fibers, with a 〈c〉-rod shape, are formed and hexagonally patterned in association with Gd segregations along dislocations that nucleated during hot extrusion. Such Gd-fiber patterns are able to regulate the relative activities of slips and twinning, as a result, overcome the inherent limitations in strength and ductility of Mg alloys. …


Single Site Robotc Device And Related Systems And Methods, Jack Mondry, Shane M. Farritor, Eric Markvicka, Thomas Frederick, Joseph Bartels Nov 2016

Single Site Robotc Device And Related Systems And Methods, Jack Mondry, Shane M. Farritor, Eric Markvicka, Thomas Frederick, Joseph Bartels

Department of Mechanical and Materials Engineering: Faculty Publications

The embodiments disclosed herein relate to various medical device components, including components that can be incor porated into robotic and/or in vivo medical devices. Certain embodiments include various medical devices for in vivo medical procedures.


Finite Element Simulation Of Pzt-Aided Interrogation Of Composite Laminates Exhibiting Damage, Amany Micheal, Yehia Bahei-El-Din Nov 2016

Finite Element Simulation Of Pzt-Aided Interrogation Of Composite Laminates Exhibiting Damage, Amany Micheal, Yehia Bahei-El-Din

Centre for Advanced Materials

Piezoelectricity has proved effective in capturing changes in structures caused by various damage mechanisms. In one approach, piezoelectric wafer active sensors (PWAS) are mounted on the surface of the host structure and utilized as both actuators and sensors to interrogate the structure and monitor its health. This is achieved by subjecting the PWAS to a transient electric pulse and reading the resulting voltage. Changes in the stiffness of the substrate due to structural damage affect the response of the PWAS, which could be correlated to integrity of the structure. Applying this technique to fibrous composite laminates encounters particular challenges due …


Video Capture And Post-Processing Technique For Approximating 3d Projectile Trajectory, Chase M. Pfeifer, Judith M. Burnfield, Guilherme M. Cesar, Max H. Twedt, Jeff A. Hawks Nov 2016

Video Capture And Post-Processing Technique For Approximating 3d Projectile Trajectory, Chase M. Pfeifer, Judith M. Burnfield, Guilherme M. Cesar, Max H. Twedt, Jeff A. Hawks

Department of Mechanical and Materials Engineering: Faculty Publications

In this paper we introduce a low-cost procedure and methodology for markerless projectile tracking in three-dimensional (3D) space. Understanding the 3D trajectory of an object in flight can often be essential in examining variables relating to launch and landing conditions. Many systems exist to track the 3D motion of projectiles but are often constrained by space or the type of object the system can recognize (Qualisys, Göteborg, Sweden; Vicon, Oxford, United Kingdom; Opti-Track, Corvallis, Oregon USA; Motion Analysis, Santa Rosa, California USA; Flight Scope, Orlando, Florida USA). These technologies can also be quite expensive, often costing hundreds of thousand dollars. …


Failure Mechanism Of Woven Roving Fabric/Vinyl Ester Composites In Freeze–Thaw Saline Environment, Elias Anis Toubia, Sadra Emami, Donald A. Klosterman Nov 2016

Failure Mechanism Of Woven Roving Fabric/Vinyl Ester Composites In Freeze–Thaw Saline Environment, Elias Anis Toubia, Sadra Emami, Donald A. Klosterman

Civil and Environmental Engineering and Engineering Mechanics Faculty Publications

This experimental study investigates the degradation mechanisms of a glass fiber-reinforced plastic material commonly used in civil engineering applications. A substantial reduction in tensile, shear, and compression properties was observed after 100 days of freeze–thaw cycling in saline environment (-20°C to 20°C). Non-destructive inspection techniques were progressively conducted on unexposed (ambient condition) and exposed (conditioned) specimens. The dynamic mechanical analysis showed permanent decrease in storage modulus that was attributed to physical degradation of the polymer and/or fiber–matrix interface. This indicated the formation of internal cracks inside the exposed glass fiber-reinforced plastic laminate. The 3D X-ray tomography identified preferred damage sites …


Cement Asphalt Mortar Modelling And Its Influence On High-Speed Train–Bridge System In Presence Of Moderate Earthquakes And Service Loading, Lingkun Chen Oct 2016

Cement Asphalt Mortar Modelling And Its Influence On High-Speed Train–Bridge System In Presence Of Moderate Earthquakes And Service Loading, Lingkun Chen

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


A356 Aluminum Alloy, Grain Refining, Modification, Microstructure, Mechanical Properties, Jonghun Yoon Oct 2016

A356 Aluminum Alloy, Grain Refining, Modification, Microstructure, Mechanical Properties, Jonghun Yoon

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Simulation Of Superplastic Forming Of Circular Edge-Welded Envelopes, Olga Tulupova Oct 2016

Simulation Of Superplastic Forming Of Circular Edge-Welded Envelopes, Olga Tulupova

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Numerical Modeling And Seismic Assessment Of Smart Isolation System For High-Speed Railway Rc Bridge Subjected To Near-Field Ground Motions, Lingkun Chen Oct 2016

Numerical Modeling And Seismic Assessment Of Smart Isolation System For High-Speed Railway Rc Bridge Subjected To Near-Field Ground Motions, Lingkun Chen

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Finite Element Simulation And Experimental Study Of The Effect Of Combining Ultrasonic Vibration With Ecap Process On Pure Aluminum 1050, Saeed Bagherzadeh, Yanfei Liu, Karen Abrinia, Qingyou Han Oct 2016

Finite Element Simulation And Experimental Study Of The Effect Of Combining Ultrasonic Vibration With Ecap Process On Pure Aluminum 1050, Saeed Bagherzadeh, Yanfei Liu, Karen Abrinia, Qingyou Han

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


The Study On Kinetics Of Metadynamic Recrystallization Of A Nb–V Microalloyed Non-Quenched And Tempered Steel, Li-Wen Zhang, Wen-Fei Shen, Chi Zhang, Ying-Nan Xia, Xin-Hua Shi, Fei Xia Oct 2016

The Study On Kinetics Of Metadynamic Recrystallization Of A Nb–V Microalloyed Non-Quenched And Tempered Steel, Li-Wen Zhang, Wen-Fei Shen, Chi Zhang, Ying-Nan Xia, Xin-Hua Shi, Fei Xia

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


The Influence Of Welding Thermal Cycle On Microstructure And Mechanical Properties For 9cr2wvta Steel, Jian Wang, Shanping Lu, Lijian Rong, Dianzhong Li Oct 2016

The Influence Of Welding Thermal Cycle On Microstructure And Mechanical Properties For 9cr2wvta Steel, Jian Wang, Shanping Lu, Lijian Rong, Dianzhong Li

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Numerical Simulation Of Heat Transfer In Porous Metals For Cooling Applications, Edgar Avalos Gauna, Yuyuan Zhao Oct 2016

Numerical Simulation Of Heat Transfer In Porous Metals For Cooling Applications, Edgar Avalos Gauna, Yuyuan Zhao

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Assessment Of High Cycle Fatigue Crack Growth Under Different Stages Based On Crystal Plasticity Modeling, Duoqi Shi, Shiwei Han, Xiaoguang Yang Oct 2016

Assessment Of High Cycle Fatigue Crack Growth Under Different Stages Based On Crystal Plasticity Modeling, Duoqi Shi, Shiwei Han, Xiaoguang Yang

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Fem Simulation Of Laser Shock Processing On Surface Morphology And Residual Stress Field Of Ti-17 Titanium Alloy With Different Laser Impact Times, Rujian Sun, Ying Zhu, Wei Guo, Peng Peng Oct 2016

Fem Simulation Of Laser Shock Processing On Surface Morphology And Residual Stress Field Of Ti-17 Titanium Alloy With Different Laser Impact Times, Rujian Sun, Ying Zhu, Wei Guo, Peng Peng

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


A Thermodynamically Consistent Distortional Hardening Model For Az31 With Experimental Validation, Baodong Shi, Yan Peng, Fusheng Pan, Jianliang Sun, Chong Yang Oct 2016

A Thermodynamically Consistent Distortional Hardening Model For Az31 With Experimental Validation, Baodong Shi, Yan Peng, Fusheng Pan, Jianliang Sun, Chong Yang

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Flow Stress And Microstructure Models Of Alloys, Lars-Erik Lindgren Oct 2016

Flow Stress And Microstructure Models Of Alloys, Lars-Erik Lindgren

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Thermal Simulation Technology For Solidification Process Of Metals, Qijie Zhai, Honggang Zhong, Renxing Li, Hongxing Zheng Oct 2016

Thermal Simulation Technology For Solidification Process Of Metals, Qijie Zhai, Honggang Zhong, Renxing Li, Hongxing Zheng

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Thermal Analysis Of Continuous And Patterned Multilayer Films In The Presence Of A Nanoscale Hot Spot, Jia-Yang Juang, Jinglin Zheng Oct 2016

Thermal Analysis Of Continuous And Patterned Multilayer Films In The Presence Of A Nanoscale Hot Spot, Jia-Yang Juang, Jinglin Zheng

Department of Mechanical and Materials Engineering: Faculty Publications

Thermal responses of multilayer films play essential roles in state-of-the-art electronic systems, such as photo/micro-electronic devices, data storage systems, and silicon-on-insulator transistors. In this paper, we focus on the thermal aspects of multilayer films in the presence of a nanoscale hot spot induced by near field laser heating. The problem is set up in the scenario of heat assisted magnetic recording (HAMR), the next-generation technology to overcome the data storage density limit imposed by superparamagnetism. We characterized thermal responses of both continuous and patterned multilayer media films using transient thermal modeling. We observed that material configurations, in particular, the thermal …


Case Study Of Quantifying Energy Loss Through Ceiling-Attic Recessed Lighting Fixtures Through 3d Numerical Simulation, Ri Na, Shengmao Lin, Zhigang Shen, Linxia Gu Sep 2016

Case Study Of Quantifying Energy Loss Through Ceiling-Attic Recessed Lighting Fixtures Through 3d Numerical Simulation, Ri Na, Shengmao Lin, Zhigang Shen, Linxia Gu

Department of Mechanical and Materials Engineering: Faculty Publications

Abstract Air leakage through recessed lighting fixtures has been identified as a common issue that causes extra energy consumption in residential buildings. However, few quantitative studies in this area were found. As such, a preliminary assessment of the magnitude of this type of energy loss was conducted by using three-dimensional (3D) transient computational fluid dynamics (CFD) models. A hypothetical layout of recessed lighting fixtures was designed with boundary conditions of four different seasons, which were obtained from recorded roof/attic temperature data sets. The results of the study indicate that leakage of recessed lighting fixtures could be a significant channel of …


Compositionally Graded Bulk Heterojunction Devices And Methods Of Manufacturing The Same, Jinsong Huang, Zhengguo Xiao Sep 2016

Compositionally Graded Bulk Heterojunction Devices And Methods Of Manufacturing The Same, Jinsong Huang, Zhengguo Xiao

Department of Mechanical and Materials Engineering: Faculty Publications

Systems and methods are described to form compositionally graded BHJ structures utilizing solvent-fluxing techniques. In implementations, the systems and methods described herein involve a high boiling point additive, a solution of a polymer donor and an acceptor, a substrate material, a working solvent, and a flux solvent for formation of compositionally graded BHJ structures.


Bioink Properties Before, During And After 3d Bioprinting, Katja Hölzl, Shengmao Lin, Liesbeth Tytgat, Sandra Van Vlierberghe, Linxia Gu, Aleksandr Ovsianikov Sep 2016

Bioink Properties Before, During And After 3d Bioprinting, Katja Hölzl, Shengmao Lin, Liesbeth Tytgat, Sandra Van Vlierberghe, Linxia Gu, Aleksandr Ovsianikov

Department of Mechanical and Materials Engineering: Faculty Publications

Bioprinting is a process based on additive manufacturing from materials containing living cells. These materials, often referred to as bioink, are based on cytocompatible hydrogel precursor formulations, which gel in a manner compatible with different bioprinting approaches. The bioink properties before, during and after gelation are essential for its printability, comprising such features as achievable structural resolution, shape fidelity and cell survival. However, it is the final properties of the matured bioprinted tissue construct that are crucial for the end application. During tissue formation these properties are influenced by the amount of cells present in the construct, their proliferation, migration …


Optical Patterning Of Trapped Charge In Nitrogen-Doped Diamond, Harishankar Jayakumar, Jacob Henshaw, Siddharth Dhomkar, Daniela Pagliero, Abdelghani Laraoui, Neil B. Manson, Remus Albu, Marcus W. Doherty, Carlos A. Meriles Aug 2016

Optical Patterning Of Trapped Charge In Nitrogen-Doped Diamond, Harishankar Jayakumar, Jacob Henshaw, Siddharth Dhomkar, Daniela Pagliero, Abdelghani Laraoui, Neil B. Manson, Remus Albu, Marcus W. Doherty, Carlos A. Meriles

Department of Mechanical and Materials Engineering: Faculty Publications

The nitrogen-vacancy (NV) centre in diamond is emerging as a promising platform for solid-state quantum information processing and nanoscale metrology. Of interest in these applications is the manipulation of the NV charge, which can be attained by optical excitation. Here, we use two-colour optical microscopy to investigate the dynamics of NV photo-ionization, charge diffusion and trapping in type-1b diamond. We combine fixed-point laser excitation and scanning fluorescence imaging to locally alter the concentration of negatively charged NVs, and to subsequently probe the corresponding redistribution of charge. We uncover the formation of spatial patterns of trapped charge, which we qualitatively reproduce …


Rapid Grain Boundary Mobility At Ambient Temperatures, Jarrod M. Lund, R Adam Bilodeau, Rebecca K. Kramer Aug 2016

Rapid Grain Boundary Mobility At Ambient Temperatures, Jarrod M. Lund, R Adam Bilodeau, Rebecca K. Kramer

The Summer Undergraduate Research Fellowship (SURF) Symposium

Understanding and measuring the influence of grain boundaries (planar defects in the crystalline structure of materials) and their motion has become a dominant aspect in materials research, with applications in additive manufacturing, fatigue prevention, and material modeling. However, modeling grain boundaries and grain boundary mobility (GBM) is difficult due to the high temperatures or external stresses, imaging solutions compatible with the material system, and long time-scales required to create measurable experimental results. In this paper, we introduce a novel material system that allows for easy and fast visualization of GBM. A drop of liquid metal eutectic gallium indium (eGaIn) placed …


Characterization Of Suspension Polymerized Polyacrylamide And Poly(Sodium Acrylate-Acrylamide) Copolymer And Their Size Influence On The Properties Of Concrete, Cole R. Davis, Kendra A. Erk, Stacey L. Kelly Aug 2016

Characterization Of Suspension Polymerized Polyacrylamide And Poly(Sodium Acrylate-Acrylamide) Copolymer And Their Size Influence On The Properties Of Concrete, Cole R. Davis, Kendra A. Erk, Stacey L. Kelly

The Summer Undergraduate Research Fellowship (SURF) Symposium

Shrinkage leading to cracking and mechanical instability is a major problem for concrete due to the loss of water during the curing process. However, through the addition of Superabsorbent Polymer (SAP) hydrogels, shrinkage can be prevented, increasing the strength of concrete. Characterization of suspension polymerized polyacrylamide (PAM) poly(sodium acrylate-polyacrylamide) (PANa-PAM) copolymer microsphere sizes, morphology and swelling behavior was conducted before adding them to concrete. Size was determined using microscopy paired with ImageJ analysis. Coulter Counter size characterization was also used to determine the particle size distribution. Swelling behavior was determined using the tea bag method as well as size analysis …


Contribution Of Fiber Undulation To Mechanics Of Three-Dimensional Collagen-I Gel, Shengmao Lin, Linxia Gu Jul 2016

Contribution Of Fiber Undulation To Mechanics Of Three-Dimensional Collagen-I Gel, Shengmao Lin, Linxia Gu

Department of Mechanical and Materials Engineering: Faculty Publications

The collagen-I gel is extensively used as a scaffold material in tissue engineering due to its ability to mimic the extracellular matrix (ECM). In this study, the mechanics of collagen-I gel is investigated using a numerical model of three-dimensional collagen network. The resulted mechanical behavior was validated against the published experimental data. Results illustrated that fiber alignment was dominated in the low strain region, and its transition to stretching dominated phenomena at higher strain led to the strain stiffening of collagen gel. The collagen undulation at the microscopic level was found to delay the initiation of strain stiffening


Effects Of Electrode Off Centre On Trapped Thickness-Shear Modes In Contoured At-Cut Quartz Resonators, Junjie Shi, Cuiying Fan, Minghao Zhao, Jiashi S. Yang Jun 2016

Effects Of Electrode Off Centre On Trapped Thickness-Shear Modes In Contoured At-Cut Quartz Resonators, Junjie Shi, Cuiying Fan, Minghao Zhao, Jiashi S. Yang

Department of Mechanical and Materials Engineering: Faculty Publications

We investigated thickness-shear vibrations of a contoured, AT-cut quartz resonator with a pair of electrodes displaced from the resonator centre. The scalar differential equations by Stevens and Tiersten for thickness-shear vibrations of electroded and unelectroded quartz plates were employed. Based on the variational formulation of the scalar differential equations established in a previous paper and the variation-based Ritz method with trigonometric functions as basis functions, free vibration resonance frequencies and trapped thickness-shear modes were obtained. The effects of the electrode off centre on resonance frequencies and mode shapes were examined. When the electrode off centre is about one hundredth of …