Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Mechanics of Materials

Series

Tolerancing

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Flexible Tools For Specifying Design Variation, Trichy Pasupathy, Xiaoping Zhao, Robert Wilhelm Apr 2006

Flexible Tools For Specifying Design Variation, Trichy Pasupathy, Xiaoping Zhao, Robert Wilhelm

Department of Mechanical and Materials Engineering: Faculty Publications

This paper describes flexible tools for specifying design variations that are based on nonuniform profile tolerance definitions. These tools specify bounds of design performance that can be used for negotiation among engineers in a collaborative design process. These specification methods allow for the capture of many different design functions that are not easily described with current tool designs. In addition, these specification methods lend themselves to efficient verification methods. Profile tolerance definitions provide the most general variation controls for complex mechanical surfaces. Common design practices and engineering standards for profile tolerances exhibit many weaknesses and limitations. We present a rationale …


Part Form Errors Predicted From Machine Tool Performance Measurements, R. G. Wilhelm, N. Srinivasan, F. Farabaugh, R. Hocken Jan 1997

Part Form Errors Predicted From Machine Tool Performance Measurements, R. G. Wilhelm, N. Srinivasan, F. Farabaugh, R. Hocken

Department of Mechanical and Materials Engineering: Faculty Publications

Machine tool performance testing, as defined by IS0 230 and ANSI B5.54 has been successfully used to maintain and improve the accuracy and repeatability of production-level machine tools. In this study, a controlled series of experiments have been used to test the efficacy of these performance tests in the prediction of part form errors. Results are shown for flatness, squareness, position, and profile tolerances. The experimental results suggest that standard machine tool performance tests can also be used to predict the “best-case” tolerances that can be achieved for particular part features.


Automating Tolerance Synthesis: A Framework And Tools, Stephen C.-Y. Lu, Robert G. Wilhelm Jan 1991

Automating Tolerance Synthesis: A Framework And Tools, Stephen C.-Y. Lu, Robert G. Wilhelm

Department of Mechanical and Materials Engineering: Faculty Publications

This paper describes CASCADE-T—a new approach to tolerance synthesis that uses a complete representation of the conditional tolerance relations that exist between features of a part under design. Conditional tolerances are automatically determined from functional requirements and shape information. Tolerance primitives based on the virtual boundary requirements approach to tolerance representation are composed to form more complex tolerance relationships. Artificial intelligence techniques, including a constraint network, frame-based system, and dependency tracking are used to support flexible and detailed computation for tolerance analysis and synthesis.