Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Mechanics of Materials

Open Access Theses & Dissertations

Combustion synThesis

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Mechanically Activated Magnesiothermic Combustion Synthesis Of Zirconium And Hafnium Diborides, Sergio Cordova Jan 2017

Mechanically Activated Magnesiothermic Combustion Synthesis Of Zirconium And Hafnium Diborides, Sergio Cordova

Open Access Theses & Dissertations

Magnetohydrodynamic (MHD) generation of electric power has the potential to increase the thermal efficiency of fossil-fuel burning power plants. Electrode materials in MHD generators must possess a high melting point, high electrical and thermal conductivities, chemical stability, and resistance to thermal shock, oxidation, and plasma sparks/arcs. Ultra-high temperature ceramics based on diborides of zirconium and hafnium (ZrB2 and HfB2) are promising materials for this application. Self-propagating high-temperature synThesis (SHS) is an attractive method for their large-scale fabrication, but SHS of ZrB2 and HfB2 from elemental Zr, Hf, and B is not economically viable because of the high cost of the …


Mechanically Activated Combustion Synthesis Of Molybdenum Borosilicides For Ultrahigh-Temperature Structural Applications, Alan Alberto Esparza Hernandez Jan 2016

Mechanically Activated Combustion Synthesis Of Molybdenum Borosilicides For Ultrahigh-Temperature Structural Applications, Alan Alberto Esparza Hernandez

Open Access Theses & Dissertations

The desire to improve the efficiency of power generation gas-turbines has led to a relentless quest for new, ultrahigh-temperature structural materials to replace the current nickel-based superalloys. These materials have reached the maximum allowable operating temperature determined by the melting temperature of these alloys, which is about 1150 °C. These materials could be replaced by molybdenum silicides and borosilicides based on Mo5SiB 2 (T2) phase due to their high melting point and mechanical properties. A major challenge, however, is to simultaneously achieve high oxidation resistance and acceptable mechanical properties at elevated temperatures. One novel approach to improve these properties is …


Combustion Synthesis Of Molybdenum Silicides And Borosilicides For Ultrahigh-Temperature Structural Applications, Mohammad Shafiul Alam Jan 2014

Combustion Synthesis Of Molybdenum Silicides And Borosilicides For Ultrahigh-Temperature Structural Applications, Mohammad Shafiul Alam

Open Access Theses & Dissertations

Molybdenum silicides and borosilicides are promising structural materials for gas-turbine power plants. A major challenge, however, is to simultaneously achieve high oxidation resistance and acceptable mechanical properties at high temperatures. For example, molybdenum disilicide (MoSi2) has excellent oxidation resistance and poor mechanical properties, while Mo-rich silicides such as Mo5Si3 (called T1) have much better mechanical properties but poor oxidation resistance. One approach is based on the fabrication of MoSi2−T1 composites that combine high oxidation resistance of MoSi2 and good mechanical properties of T1. Another approach involves the …