Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Mechanics of Materials

University of Nebraska - Lincoln

Series

Finite element methods

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Generic Strategies To Implement Material Grading In Finite Element Methods For Isotropic And Anisotropic Materials, Ke Yu Dec 2011

Generic Strategies To Implement Material Grading In Finite Element Methods For Isotropic And Anisotropic Materials, Ke Yu

Department of Engineering Mechanics: Dissertations, Theses, and Student Research

We look at generic strategies to transfer material grading into finite element methods. Three strategies are proposed to transfer material grading into the finite element analysis. These strategies are node-centered, element-centered, and the definition of material grading through external functions. The process to achieve each strategy is stated, and examples are used to illustrate each strategy, and to compare them. The strategies are implemented in finite-deformation nonlinear elastic analysis.

Several examples are used to illustrate the implementation of each strategy for graded isotropic materials. For these examples, the results obtained from finite element models are compared with those obtained from …


Prediction Of Soakout Time Using Analytical Models, B. Chakravarthy, H. P. Cherukuri, R. G. Wilhelm Jan 2002

Prediction Of Soakout Time Using Analytical Models, B. Chakravarthy, H. P. Cherukuri, R. G. Wilhelm

Department of Mechanical and Materials Engineering: Faculty Publications

In precision manufacturing enterprises, machine parts at nonstandard temperatures are often soaked to standard temperature prior to making any dimensional measurements. The soakout times are usually determined using lumped heat-transfer models where the part temperatures are assumed to be uniform. This article discusses conditions under which lumped model assumptions are valid by comparing lumped analyses for various shapes and materials with the more general finite element results. In addition, the effect of ambient temperature cycling on part response is also studied.