Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Linearized Rigid-Body Static And Dynamic Stability Of An Aircraft With A Bio-Inspired Rotating Empennage, Austin J. Kohler Dec 2022

Linearized Rigid-Body Static And Dynamic Stability Of An Aircraft With A Bio-Inspired Rotating Empennage, Austin J. Kohler

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

The United States Air Force (USAF) will likely seek to remove the vertical tail of next-generation fighter aircraft. This work seeks to characterize the static and dynamic stability and handling qualities of a vertical-tailless aircraft concept that would satisfy the USAF’s goal. This concept aircraft, one modified with a Bio-Inspired Rotating Empennage (BIRE), does not have a vertical tail, and is instead capable of rotating the horizontal tail about the fuselage axis for maneuvering. The dynamic characteristics of the BIRE-modified aircraft are compared to a baseline unmodified aircraft, similar to the F16, with a traditional vertical tail. Linearized aerodynamic models …


A Review Of Avian-Inspired Morphing For Uav Flight Control, Christina Harvey, Lawren L. Gamble, Christian R. Bolander, Douglas F. Hunsaker, James J. Joo, Daniel J. Inman Apr 2022

A Review Of Avian-Inspired Morphing For Uav Flight Control, Christina Harvey, Lawren L. Gamble, Christian R. Bolander, Douglas F. Hunsaker, James J. Joo, Daniel J. Inman

Mechanical and Aerospace Engineering Faculty Publications

The impressive maneuverability demonstrated by birds has so far eluded comparably sized uncrewed aerial vehicles (UAVs). Modern studies have shown that birds’ ability to change the shape of their wings and tail in flight, known as morphing, allows birds to actively control their longitudinal and lateral flight characteristics. These advances in our understanding of avian flight paired with advances in UAV manufacturing capabilities and applications has, in part, led to a growing field of researchers studying and developing avian-inspired morphing aircraft. Because avian-inspired morphing bridges at least two distinct fields (biology and engineering), it becomes challenging to compare and contrast …


Modified Trajectory Shaping Guidance For Autonomous Path Following Control Of Platooning Ground Vehicles, Ishmaal T. Erekson May 2016

Modified Trajectory Shaping Guidance For Autonomous Path Following Control Of Platooning Ground Vehicles, Ishmaal T. Erekson

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

This thesis proposes a modification of trajectory shaping guidance to provide more accurate path convergence in curved paths. The object of this thesis is to apply this simple guidance law to platooning control to ensure all vehicles in the platoon converge to a desired constant radius path at a desired vehicle separation distance. To show the viability of this new guidance law, it is shown mathematically to be exponentially stable. It is also confirmed through simulations and on ground robots.