Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering

Porous media

University of Kentucky

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Evaluation Of Radiative Conductivity Inside A Porous Media With The Effect Of Participating Medium Based On Microscale Imaging, Mingping Zheng Jan 2021

Evaluation Of Radiative Conductivity Inside A Porous Media With The Effect Of Participating Medium Based On Microscale Imaging, Mingping Zheng

Theses and Dissertations--Mechanical Engineering

Space vehicles will experience high loads of heat while entering the planetary atmosphere. At such high temperature, radiation becomes the dominant mode of heat transfer. Since the atmospheric entry environment is nearly impossible to duplicate in a laboratory environment, a numerical model to evaluate thermal performance of the thermal protection system was established. The model simulates the radiative heat transfer process in highly porous media, and the process also takes into account the influence of the participating media. An iterative approach and periodic boundary conditions are used to solve The unbalanced heat flux problem. CT scanned microscale Fiberform and artificial …


A Physics-Based Approach To Modeling Wildland Fire Spread Through Porous Fuel Beds, Tingting Tang Jan 2017

A Physics-Based Approach To Modeling Wildland Fire Spread Through Porous Fuel Beds, Tingting Tang

Theses and Dissertations--Mechanical Engineering

Wildfires are becoming increasingly erratic nowadays at least in part because of climate change. CFD (computational fluid dynamics)-based models with the potential of simulating extreme behaviors are gaining increasing attention as a means to predict such behavior in order to aid firefighting efforts. This dissertation describes a wildfire model based on the current understanding of wildfire physics. The model includes physics of turbulence, inhomogeneous porous fuel beds, heat release, ignition, and firebrands. A discrete dynamical system for flow in porous media is derived and incorporated into the subgrid-scale model for synthetic-velocity large-eddy simulation (LES), and a general porosity-permeability model is …