Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Enabling Premixed Hydrogen-Air Combustion For Aeroengines Via Laboratory Experiment Modeling, Christopher James Caulfield May 2023

Enabling Premixed Hydrogen-Air Combustion For Aeroengines Via Laboratory Experiment Modeling, Christopher James Caulfield

Masters Theses

All combustion systems from large scale power plants to the engines of cars to gas turbines in aircraft are looking for new fuel sources. Recently, clean energy for aviation has come into the foreground as an important issue due to the environment impacts of current combustion methods and fuels used. The aircraft industry is looking towards hydrogen as a new, powerful, and clean fuel of the future. However there are several engineering and scientific challenges to overcome before hydrogen can be deployed into the industry. These issues
range from storing the hydrogen in a viable cryogenic form for an aircraft …


Multidimensional Transport-Coupled Numerical Investigation Of Non-Premixed Low-Temperature Flame In Atmospheric And High-Pressure Systems, Sudipta Saha Apr 2023

Multidimensional Transport-Coupled Numerical Investigation Of Non-Premixed Low-Temperature Flame In Atmospheric And High-Pressure Systems, Sudipta Saha

Theses and Dissertations

Gas-phase chemical reactions coupled with multidimensional fluid flow and heat and mass transport are found in various applications, i.e., from conventional engine applications to novel combustion techniques. With the goal of understanding such complex coupling in reacting flow systems, this dissertation work focuses on developing multi-physics simulation frameworks to investigate the effect of multidimensional transport on flame dynamics. This study primarily focuses on the modeling and simulation of low temperature flame formation in i) a canonical experimental setting with counterflow burners and ii) a supercritical water medium (i.e., hydrothermal flame).

In the first part of the dissertation, simulations of the …


A Computational Fluid Dynamic Analysis Of Oxyacetylene Combustion Flow For Use In Material Response Boundary Conditions, Craig Meade Jan 2023

A Computational Fluid Dynamic Analysis Of Oxyacetylene Combustion Flow For Use In Material Response Boundary Conditions, Craig Meade

Theses and Dissertations--Mechanical Engineering

Oxyacetylene torches are used in the aerospace industry and research to test thermal protection system materials (TPS) due to their high flame temperatures and high heat flux capabilities. The purpose of this work is to determine a combustion model to accurately simulate the high temperature flow of an oxyacetylene torch. The flow conditions around a sample material can then be used as boundary conditions when modeling TPS material response. Two separate combustion models with equilibrium chemistry were investigated using ANSYS Fluent™; the Eddy-Dissipation Model, and the Partially Premixed model.The results of this study are compared to existing experiments for validation.