Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Development Of Reduced Chemical Kinetic Models For The Numerical Simulation Of Combustion And Emissions Behavior Of Representative Conventional And Bio-Derived Fuels, Mazen A. Eldeeb Jun 2020

Development Of Reduced Chemical Kinetic Models For The Numerical Simulation Of Combustion And Emissions Behavior Of Representative Conventional And Bio-Derived Fuels, Mazen A. Eldeeb

Mineta Transportation Institute Publications

The study addresses two of the main challenges facing combustion modeling for transportation fuels: simultaneous simulation of non-related combustion problems and reducing the computational cost of the modeling process itself. To address the first challenge, researchers determine a characteristic flame time from thermal diffusivity and laminar burning velocity. Researchers examine parametric dependence of flame time and ignition delay time on pressure, temperature and equivalence ratio for methane, based on validated chemical kinetic mechanisms. The study reveals flame time and ignition delay time show similar temperature dependence, flame time has stronger dependence on equivalence ratio and weaker dependence on pressure than …


Computational Analysis Of A New Planar Mixing Layer Flame Configuration To Study Soot Inception, Carmen Ciardiello May 2020

Computational Analysis Of A New Planar Mixing Layer Flame Configuration To Study Soot Inception, Carmen Ciardiello

Honors Scholar Theses

The production of soot is omnipresent in society today. Soot is the product of many of the combustion processes that provide the bulk of the usable energy throughout the world. Furthermore, soot particulate poses a great danger to both the environment and all forms of life on Earth. It has proven to pollute ecosystems, foster health problems for human beings, and degrade air quality [1].

These dangers make studying and understanding soot particulate paramount for improving the quality of life. Thus, this study introduces a new flame configuration for studying soot inception. Presently, various common flame configurations have been found …


A Quasi-Monte Carlo Solver For Thermal Radiation In Participating Media, Joseph Farmer, Somesh Roy Feb 2020

A Quasi-Monte Carlo Solver For Thermal Radiation In Participating Media, Joseph Farmer, Somesh Roy

Mechanical Engineering Faculty Research and Publications

The Monte Carlo (MC) method is the most accurate method for resolving radiative heat transfer in participating media. However, it is also computationally prohibitive in large-scale simulations. To alleviate this, this study proposes a quasi-Monte Carlo (QMC) method for thermal radiation in participating media with a focus on combustion-related problems. The QMC method employs low-discrepancy sequences (LDS) in place of the traditional random numbers. Three different low-discrepancy sequences – Sobol, Halton, and Niederreiter – were examined as part of this work. The developed QMC method was first validated against analytical solutions of radiative heat transfer in several one-dimensional configurations. Then …