Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering

Combustion

University of South Carolina

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Multidimensional Transport-Coupled Numerical Investigation Of Non-Premixed Low-Temperature Flame In Atmospheric And High-Pressure Systems, Sudipta Saha Apr 2023

Multidimensional Transport-Coupled Numerical Investigation Of Non-Premixed Low-Temperature Flame In Atmospheric And High-Pressure Systems, Sudipta Saha

Theses and Dissertations

Gas-phase chemical reactions coupled with multidimensional fluid flow and heat and mass transport are found in various applications, i.e., from conventional engine applications to novel combustion techniques. With the goal of understanding such complex coupling in reacting flow systems, this dissertation work focuses on developing multi-physics simulation frameworks to investigate the effect of multidimensional transport on flame dynamics. This study primarily focuses on the modeling and simulation of low temperature flame formation in i) a canonical experimental setting with counterflow burners and ii) a supercritical water medium (i.e., hydrothermal flame).

In the first part of the dissertation, simulations of the …


La0.7Sr0.3Fe0.7Ga0.3O3-Δ As Electrode Material For A Symmetrical Solid Oxide Fuel Cell, Zhibin Yang, Yu Chen, Chao Jin, Guoliang Xiao, Minfang Han, Fanglin Chen Jan 2015

La0.7Sr0.3Fe0.7Ga0.3O3-Δ As Electrode Material For A Symmetrical Solid Oxide Fuel Cell, Zhibin Yang, Yu Chen, Chao Jin, Guoliang Xiao, Minfang Han, Fanglin Chen

Faculty Publications

In this research, La0.7Sr0.3Fe0.7Ga0.3O3−δ (LSFG) perovskite oxide was successfully prepared using a microwave-assisted combustion method, and employed as both anode and cathode in symmetrical solid oxide fuel cells. A maximum power density of 489 mW cm−2 was achieved at 800 °C with wet H2 as the fuel and ambient air as the oxidant in a single cell with the configuration LSFG|La0.8Sr0.2Ga0.83Mg0.17O3−δ|LSFG. Furthermore, the cells demonstrated good stability in H2 and acceptable sulfur tolerance.