Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering

Combustion

Brigham Young University

Articles 1 - 6 of 6

Full-Text Articles in Engineering

Burner Design For A Pressurized Oxy-Coal Reactor, William Cody Carpenter Jun 2019

Burner Design For A Pressurized Oxy-Coal Reactor, William Cody Carpenter

Theses and Dissertations

The need for electric power across the globe is ever increasing, as is the need to produce electricity in a sustainable method that does not emit CO2 into the atmosphere. A proposed technology for efficiently capturing CO2 while producing electricity is pressurized oxy-combustion (POC). The objective of this work is to design, build, and demonstrate a burner for a 20 atmosphere oxy-coal combustor. Additionally, working engineering drawings for the main pressure vessel and floor plan drawings for the main pressure vessel, exhaust, and fuel feed systems were produced. The POC reactor enables the development of three key POC technologies: a …


Design, Fabrication And Testing Of A Pressurized Oxy-Coal Reactor Exhaust System, Aaron Bradley Skousen Jun 2019

Design, Fabrication And Testing Of A Pressurized Oxy-Coal Reactor Exhaust System, Aaron Bradley Skousen

Theses and Dissertations

One of the challenges facing engineers is to provide clean, sustainable, affordable and reliable electricity. One of the major pollutants associated with coal combustion is CO2. A proposed technology for efficiently capturing CO2 while producing electricity is pressurized oxy-combustion (POC). The first objective of this work is to design, build and demonstrate an exhaust system for a 20 atmosphere oxy-coal combustor. The second objective of this work is to design and build mounts for a two-color laser extinction method in the POC. The POC reactor enables the development of three key technologies: a coal dry-feed system, a high pressure burner, …


The Composition And Distribution Of Coal-Ash Deposits Under Reducing And Oxidizing Conditions From A Suite Of Eight Coals, David R. Brunner Apr 2011

The Composition And Distribution Of Coal-Ash Deposits Under Reducing And Oxidizing Conditions From A Suite Of Eight Coals, David R. Brunner

Theses and Dissertations

Eighteen elements, including: carbon, oxygen, sodium, magnesium, aluminum, silicon, phosphorus, sulfur, chlorine, potassium, calcium, titanium, chromium, manganese, iron, nickel, strontium, and barium were measured using a scanning electron microscope with energy dispersive spectroscopy from deposits. The deposits were collected by burning eight different coals in a 160 kWth, staged, down-fired, swirl-stabilized combustor. Both up-stream and down-stream deposits from an oxidizing region (equivalence ratio 0.86) and reducing region (equivalence ratio 1.15) were collected. Within the deposits, the particle size and morphology were studied. The average particle cross-sectional area from the up-stream deposits ranged from 10 - 75 µm2 and had a …


A Mechanistic Investigation Of Nitrogen Evolution In Pulverized Coal Oxy-Fuel Combustion, Andrew John Mackrory Oct 2008

A Mechanistic Investigation Of Nitrogen Evolution In Pulverized Coal Oxy-Fuel Combustion, Andrew John Mackrory

Theses and Dissertations

Oxy-fuel combustion is an enabling technology for capture of CO2 from coal combustion, the economics of which depends strongly on the ability of the process to produce low NOX emissions. The literature contains many reports of lower NOX emissions from oxy-fuel combustion but the reasons for this are not fully understood. The objective of this work was to gain understanding of nitrogen evolution under pulverized coal oxy-fuel conditions. Pulverized coal was burned in a once-through, down-fired, laminar flow reactor. Nitrogen compounds and other combustion species were measured at the reactor centerline as a function of distance from the burner. Dry …


Effects Of Fuel Molecular Structure And Composition On Soot Formation In Direct-Injection Spray Flames, Kenth Ingemar Svensson May 2005

Effects Of Fuel Molecular Structure And Composition On Soot Formation In Direct-Injection Spray Flames, Kenth Ingemar Svensson

Theses and Dissertations

Numerous investigations have been conducted to determine the effect of fuel composition and molecular structure on particulate emissions using exhaust gas analysis, but relatively few measurements have been obtained in-cylinder or under conditions where fuel effects can be isolated from other variables. In this work, dimethoxymethane was used as the base fuel to produce a non-sooting flame in a constant volume combustion vessel at 1000 K, and a density of 16.6 kg/m3. A second fuel was then added incrementally to determine an incipient soot limit. Line-of-sight extinction measurements were used as the primary diagnostic tool to determine if a correlation …


A Five-Zone Model For Direct Injection Diesel Combustion, Rich Asay Sep 2003

A Five-Zone Model For Direct Injection Diesel Combustion, Rich Asay

Theses and Dissertations

Recent imaging studies have provided a new conceptual model of the internal structure of direct injection diesel fuel jets as well as empirical correlations predicting jet development and structure. This information was used to create a diesel cycle simulation model using C language including compression, fuel injection and combustion, and expansion processes. Empirical relationships were used to create a new mixing-limited zero-dimensional model of the diesel combustion process. During fuel injection five zones were created to model the reacting fuel jet: 1) liquid phase fuel 2) vapor phase fuel 3) rich premixed products 4) diffusion flame sheath 5) surrounding bulk …