Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Dynamic Material Characterization Of Polymeric Foam By Means Of Experimental, Analytical, Phenomenological And Numerical Methods, Foad Rahimidehgolan Jan 2024

Dynamic Material Characterization Of Polymeric Foam By Means Of Experimental, Analytical, Phenomenological And Numerical Methods, Foad Rahimidehgolan

Electronic Theses and Dissertations

The main objective of this study was to advance the experimental, numerical, phenomenological and analytical methods of assessing the dynamic compressive response of polymeric foams, especially at an intermediate strain rate range of 50 s-1 to 600 s-1. Different experimental apparatuses and techniques, including the universal compression/tension testing machine (strain rates up to 0.5 s-1), custom-build droptower (a strain rate range of 50 s-1 to 200 s-1) and pneumatic testing apparatus (a strain rate range of 200 s-1 to 600 s-1) were utilized in the macro-mechanical characterization. The microstructure of the investigated polymeric foams was studied by means of Scanning …


An Elasto-Plastic Constitutive Model With Phase-Field Fracture For Additively Manufactured Metallic Materials, Nolan Ruble Jan 2024

An Elasto-Plastic Constitutive Model With Phase-Field Fracture For Additively Manufactured Metallic Materials, Nolan Ruble

Dissertations, Master's Theses and Master's Reports

The advent of additive manufacturing (AM), commonly known as 3D printing, has revolutionized the production of metallic components across various industries. This technology, which builds objects layer by layer, has shifted paradigms in manufacturing, allowing for unprecedented design freedom, material efficiency, and rapid prototyping. Metal additive manufacturing, in particular, has shown remarkable promise due to its ability to produce complex geometries that are difficult or impossible to achieve with traditional subtractive methods. In addition, additively manufactured (AM) materials are gaining popularity in thanks to their often superior and controllable properties in comparison to their wrought counterparts. In the present work, …


Effect Of Resin Bleed Out On Compaction Behavior Of The Fiber Tow Gap Region During Automated Fiber Placement Manufacturing, Von Clyde Jamora, Virginia Rauch, Sergii G. Kravchenko, Oleksandr G. Kravchenko Jan 2024

Effect Of Resin Bleed Out On Compaction Behavior Of The Fiber Tow Gap Region During Automated Fiber Placement Manufacturing, Von Clyde Jamora, Virginia Rauch, Sergii G. Kravchenko, Oleksandr G. Kravchenko

Mechanical & Aerospace Engineering Faculty Publications

Automated fiber placement is a state-of-the-art manufacturing method which allows for precise control over layup design. However, AFP results in irregular morphology due to fiber tow deposition induced features such as tow gaps and overlaps. Factors such as the squeeze flow and resin bleed out, combined with large non-linear deformation, lead to morphological variability. To understand these complex interacting phenomena, a coupled multiphysics finite element framework was developed to simulate the compaction behavior around fiber tow gap regions, which consists of coupled chemo-rheological and flow-compaction analysis. The compaction analysis incorporated a visco-hyperelastic constitutive model with anisotropic tensorial prepreg viscosity, which …