Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

The Ejection Of Large Non-Oscillating Droplets From A Hydrophobic Wedge In Microgravity, Logan Torres, Mark M. Weislogel Dec 2021

The Ejection Of Large Non-Oscillating Droplets From A Hydrophobic Wedge In Microgravity, Logan Torres, Mark M. Weislogel

Mechanical and Materials Engineering Faculty Publications and Presentations

When confined within containers or conduits, drops and bubbles migrate to regions of minimum energy by the combined effects of surface tension, surface wetting, system geometry, and initial conditions. Such capillary phenomena are exploited for passive phase separation operations in micro-fluidic devices on earth and macro-fluidic devices aboard spacecraft. Our study focuses on the migration and ejection of large inertial-capillary drops confined between tilted planar hydrophobic substrates (a.k.a., wedges). In our experiments, the brief nearly weightless environment of a 2.1 s drop tower allows for the study of such capillary dominated behavior for up to 10 mL water drops with …


The Effect Of Viscosity On The Puddle Dynamics In Low Gravity Environment, Taif Hamed Saleh Al Juboori Nov 2021

The Effect Of Viscosity On The Puddle Dynamics In Low Gravity Environment, Taif Hamed Saleh Al Juboori

Dissertations and Theses

Enormous liquid puddles are observed to jump spontaneously from non-wetting substrates when exposed to the nearly step-reduction in body force common to drop tower test facilities. The phenomenon is similar to the second half of terrestrial drop bounce experiments except that (1) the initial static equilibrium configuration satisfies the static contact angle condition, (2) the initial height of the puddle is limited to the capillary height, and (3), for drop tower test durations on the order of seconds, puddle volumes can be over 104 times larger in mass (volume). The passive puddle jump mechanism provides a no-moving-parts deployment method …


The Draining Of Capillary Liquids From Containers With Interior Corners Aboard The Iss, Joshua Thomas Mccraney, Mark M. Weislogel, Paul Steen Nov 2021

The Draining Of Capillary Liquids From Containers With Interior Corners Aboard The Iss, Joshua Thomas Mccraney, Mark M. Weislogel, Paul Steen

Mechanical and Materials Engineering Faculty Publications and Presentations

In this work, we analyze liquid drains from containers in effective zero-g conditions aboard the International Space Station (ISS). The efficient draining of capillary fluids from conduits, containers, and media is critical in particular to high-value liquid samples such as minuscule biofluidics processing on earth and enormous cryogenic fuels management aboard spacecraft. The amount and rate of liquid drained can be of key concern. In the absence of strong gravitational effects, system geometry, and liquid wetting dominate capillary fluidic behavior. During the years 2010–2015, NASA conducted a series of handheld experiments aboard the ISS to observe “large” length scale capillary …