Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Graphene-Fibers Hybrid Structures As Adsorbents For Heavy Metal Ions In Aqueous Solutions, Dulce C. Capitanachi Dec 2019

Graphene-Fibers Hybrid Structures As Adsorbents For Heavy Metal Ions In Aqueous Solutions, Dulce C. Capitanachi

Theses and Dissertations

The project focuses on the study of graphene-fiber hybrid structures for adsorption of heavy metal ions in aqueous solutions. Polyvinyl alcohol-based graphene–fiber structures were created using centrifugal spinning and a carbonization process.

Characterization methods of the graphene–fiber hybrid structures (GFHS) include SEM, FTIR, TGA, and EDX. Single-step batch-type adsorption studies were performed to analyze the interaction of Cu (II) and Pb (II) ions onto GFHS surface. Different heavy metal ion concentrations were used, as well as a variation of pH values. Elemental analysis of the adsorbent’s surface after filtration experiments was studied by EDX and spectroscopy to verify the presence …


Exploring The Electrical Properties Of Twisted Bilayer Graphene, William Shannon May 2019

Exploring The Electrical Properties Of Twisted Bilayer Graphene, William Shannon

Senior Theses

Two-dimensional materials exhibit properties unlike anything else seen in conventional substances. Electrons in these materials are confined to move only in the plane. In order to explore the effects of these materials, we have built apparatus and refined procedures with which to create two-dimensional structures. Two-dimensional devices have been made using exfoliated graphene and placed on gold contacts. Their topography has been observed using Atomic Force Microscopy (AFM) confirming samples with monolayer, bilayer, and twisted bilayer structure. Relative work functions of each have been measured using Kelvin Probe Force Microscopy (KPFM) showing that twisted bilayer graphene has a surface potential …


Modelling Palladium Decorated Graphene Using Density Functional Theory To Analyze Hydrogen Sensing Application, Sameer Kulkarni May 2019

Modelling Palladium Decorated Graphene Using Density Functional Theory To Analyze Hydrogen Sensing Application, Sameer Kulkarni

Mechanical Engineering Undergraduate Honors Theses

Graphene is an exciting new material with many promising applications. One such application of graphene is gas sensing, when adsorbed with transition metals, notably Palladium. Therefore, it is of paramount importance to have appropriate ab initio calculations to calculate the various properties of graphene under different adsorbates and gasses. The first step in these calculations is to have a functioning base Density Functional Theory (DFT) model of pristine graphene decorated with Palladium. The computational methods described in this paper has yielded results for pristine graphene that have been confirmed many times in previous experimental and theoretical studies. Future work needs …


Shock Compaction Of Graphene Doped Yttria Stabilized Zirconia: An Experimental And Computational Study, Christopher Rueben Johnson Apr 2019

Shock Compaction Of Graphene Doped Yttria Stabilized Zirconia: An Experimental And Computational Study, Christopher Rueben Johnson

Master's Theses (2009 -)

Yttria stabilized zirconia (YSZ) is a broadly used ceramic due to its impeccable hardness and thermal stability. Limitations of the material, however, subsist within its fracture toughness. Literature indicates that shock consolidation may enable production of composite YSZ and graphene mixtures with improved fracture toughness and other material properties while maintaining the material’s nanostructure dimensionality. Therefore, investigation of the compaction phenomena at non-equilibrium states will provide informative results to be used in the fabrication of bulk graphene-YSZ composites. Computational molecular dynamics (MD) simulations and impact experiments are conducted to explore and characterize the dynamic response of the YSZ variants. Molecular …


Effect Of Turbostratic Orientations And Confined Fluid On Mechanical Strength Of Bi-Layer Graphene: A Molecular Dynamics Study, Nil B. Dhankecha Jan 2019

Effect Of Turbostratic Orientations And Confined Fluid On Mechanical Strength Of Bi-Layer Graphene: A Molecular Dynamics Study, Nil B. Dhankecha

Theses

The rise of graphene as a reinforcement material in the last decade has been exponential owing to its superior mechanical properties. This one atom thick 2D material is applicable in many industries related to nanomechanical, nanoelectronics and optical devices. Despite its strength and superior properties, single-layer graphene tends to be unstable in a free-standing form. This led to active use of bi-layer and multilayered graphene in many of the above-stated applications. Though properties of single-layer graphene have been extensively investigated both computationally as well as experimentally for over a decade, bilayer graphene and its turbostratic form are still under research. …