Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Engineering

Material Properties Design Using Simulations And Experiments For Powder Injection Molding Of Lead Zirconate Titanate (Pzt)., Bhushan Pramod Bandiwadekar Dec 2017

Material Properties Design Using Simulations And Experiments For Powder Injection Molding Of Lead Zirconate Titanate (Pzt)., Bhushan Pramod Bandiwadekar

Electronic Theses and Dissertations

Powder injection molding (PIM) process simulations can be performed to minimize the number of injection molding experiments by estimating material properties necessary for PIM simulations. In current work, lead zirconate titanate (PZT) powder-polymer binder feedstock was compounded for 45 vol. % and 52 vol. % solids loading. PIM experiments on designed micro-pillar array geometry were performed using 52 vol. % PZT. Using PIM experiments results as basis, PIM simulations were performed on designed micro-pillar array geometries to understand the effectiveness of PIM simulations with the use of estimated feedstock properties in predicting molding behavior that have micro-features. Additionally, PIM simulations …


Development Mems Acoustic Emission Sensors, Adrian Enrique Avila Gomez Nov 2017

Development Mems Acoustic Emission Sensors, Adrian Enrique Avila Gomez

USF Tampa Graduate Theses and Dissertations

The purpose of this research is to develop MEMS based acoustic emission sensors for structural health monitoring. Acoustic emission (AE) is a well-established nondestructive testing technique that is typically used to monitor for fatigue cracks in structures, leaks in pressurized systems, damages in composite materials or impacts. This technology can offer a precise evaluation of structural conditions and allow identification of imminent failures or minor failures that can be addressed by planned maintenances routines. AE causes a burst of ultrasonic energy that is measured as high frequency surface vibrations (30 kHz to 1 MHz) generated by transient elastic waves that …


Improving The Efficiency Of Wind Farm Turbines Using External Airfoils, Shujaut Bader Oct 2017

Improving The Efficiency Of Wind Farm Turbines Using External Airfoils, Shujaut Bader

Masters Theses

Wind turbine efficiency typically focuses on the shape, orientation, or stiffness of the turbine blades. In this thesis, the focus is instead on using static fixed airfoils in proximity to the wind turbine to control the airflow coming out of the turbine. These control devices have three beneficial effects. (1) They gather air from “higher up” where the air is moving faster on average (and therefore has more kinetic energy in it). (2) They throw the used (and slowed down air) downwards. This means that any turbines in the wind farm behind the lead turbines do not get “stale” air. …


Performance Analysis Of Constant Speed Local Abstacle Avoidance Controller Using A Mpc Algorithym On Granular Terrain, Nicholas Haraus Oct 2017

Performance Analysis Of Constant Speed Local Abstacle Avoidance Controller Using A Mpc Algorithym On Granular Terrain, Nicholas Haraus

Master's Theses (2009 -)

A Model Predictive Control (MPC) LIDAR-based constant speed local obstacle avoidance algorithm has been implemented on rigid terrain and granular terrain in Chrono to examine the robustness of this control method. Provided LIDAR data as well as a target location, a vehicle can route itself around obstacles as it encounters them and arrive at an end goal via an optimal route. This research is one important step towards eventual implementation of autonomous vehicles capable of navigating on all terrains. Using Chrono, a multibody physics API, this controller has been tested on a complex multibody physics HMMWV model representing the plant …


Simulating Dynamic Failure Of Polymer-Bonded Explosives Under Periodic Excitation, Rachel Kohler, Camilo Duarte Cordon, Marisol Koslowski Aug 2017

Simulating Dynamic Failure Of Polymer-Bonded Explosives Under Periodic Excitation, Rachel Kohler, Camilo Duarte Cordon, Marisol Koslowski

The Summer Undergraduate Research Fellowship (SURF) Symposium

Accidental mishandling of explosive materials leads to thousands of injuries in the US every year. Understanding the mechanisms behind the detonation process is crucial to prevent such accidents. In polymer-bonded explosives (PBX), high-frequency mechanical excitation generates thermal energy and can lead to an increase in temperature and vapor pressure, and potentially the initiation of the detonation process. However, the mechanisms behind this energy release, such as the effects of dynamic fracture and friction, are not well understood. Experimental data is difficult to collect due to the different time scales of reactions and vibrations, so research is aided by running simulations …


An Optimization Model For Operating Room Scheduling To Reduce Blocking Across The Perioperative Process, Amin Abedini, Wei Li, Honghan Ye Jul 2017

An Optimization Model For Operating Room Scheduling To Reduce Blocking Across The Perioperative Process, Amin Abedini, Wei Li, Honghan Ye

Mechanical Engineering Faculty Publications

Operating room (OR) scheduling is important. Because of increasing demand for surgical services, hospitals must provide high quality care more efficiently with limited resources. When constructing the OR schedule, it is necessary to consider the availability of downstream resources, such as intensive care unit (ICU) and post anaesthesia care unit (PACU). The unavailability of downstream resources causes blockings between every two consecutive stages. In this paper we address the master surgical schedule (MSS) problem in order to minimize blockings between two consecutive stages. First, we present a blocking minimization (BM) model for the MSS by using integer programming, based on …


Trim Tuning Of Sps-Series Dqw Crab Cavity Prototypes, S. Verdú-Andrés, J. Skaritka, Q. Wu, A. Ratti, S. Baurac, C. H. Boulware, T. Grimm, J. Yancey, W. Clemens, E. A. Mcewen, H. Park May 2017

Trim Tuning Of Sps-Series Dqw Crab Cavity Prototypes, S. Verdú-Andrés, J. Skaritka, Q. Wu, A. Ratti, S. Baurac, C. H. Boulware, T. Grimm, J. Yancey, W. Clemens, E. A. Mcewen, H. Park

Physics Faculty Publications

The final steps in the manufacturing of a superconducting RF cavity involve careful tuning before the final welds to match the target frequency as fabrication tolerances may introduce some frequency deviations. The target frequency is chosen based on analysis of the shifts induced by remaining processing steps including acid etching and cool down. The baseline fabrication of a DQW crab cavity for the High Luminosity LHC (HL-LHC) envisages a first tuning before the cavity subassemblies are welded together. To produce a very accurate final result, subassemblies are trimmed to frequency in the last machining steps, using a clamped cavity assembly …


Simulation And Analysis Of A Drilling Fluid Using A Herschel-Bulkley Model, Daniel Powell Apr 2017

Simulation And Analysis Of A Drilling Fluid Using A Herschel-Bulkley Model, Daniel Powell

Mechanical Engineering ETDs

In the study, a drilling fluid with known properties is analyzed and simulated in the laminar regime through a pipe with dimensions of 1.5m in length and 0.02m in diameter. The purpose of the conducted analysis is to demonstrate the advantages of the Herschel-Bulkley model currently used in the oil and gas industry for analyzing non-Newtonian drilling fluids.

For comparison, the analysis is also performed using more simple models for non-Newtonian fluids such as the Bingham Plastic model and the Power Law model and for a Newtonian fluid (water). In addition to analytical models, computations are conducted using …


Venus Lander Design, Garon Morgan, Brian Rodrigues, Dhruv Sachani, Jason Scott Jan 2017

Venus Lander Design, Garon Morgan, Brian Rodrigues, Dhruv Sachani, Jason Scott

Capstone Design Expo Posters

The students designed an Entry, Descent, and Landing (EDL) system for a lander to reach the surface of Venus. The students used a combination of 3D modelling and programming to design the EDL within given constraints under specific tolerances. An EDL takes into consideration entry flight dynamics, aeroheating, and landing systems. The EDL was divided into three stages (see below). The separation of stages was designed to address unique challenges found at different points throughout the EDL. The primary objective of the first stage was to minimize the heat associated with the entry velocity to the payload. The second stage …


Simulation Study On Effect Of Gas Charging And Egr In A Dual-Fuel Engine, Satyavenkata Naga Sai Sharath Gorthy Jan 2017

Simulation Study On Effect Of Gas Charging And Egr In A Dual-Fuel Engine, Satyavenkata Naga Sai Sharath Gorthy

Dissertations, Master's Theses and Master's Reports

Natural gas combined with diesel as micro pilot has the capabilities of achieving lower NOx and soot emissions. Optimization of the combustion process in engines with natural gas and diesel micro-pilot is essential to achieve higher efficiencies and loads. Gas charging (intake air boosting) and EGR are two technologies which when implemented in the natural gas-diesel engines, provide the opportunity to achieve higher efficiencies and loads and low emissions. Simulation study is one of the approaches to investigate the extent and effects of gas charging and EGR on the performance of the engine. With the rapid improvements over the past …


Simulation Of Human Ankle Trajectory During Stance Phase Of Gait, Leslie Castelino Jan 2017

Simulation Of Human Ankle Trajectory During Stance Phase Of Gait, Leslie Castelino

Dissertations, Master's Theses and Master's Reports

A simulation was developed which mimics the human gait characteristics based on the input of an individual’s gait trajectory. This simulation also estimates the impedance of the human ankle based on the ground reaction forces measured by the force plate. This simulation will accept alterations of the following parameters: total body weight, weight of the shank, weight of the foot, trajectories of the shank and foot of the individual and orientation of the force plate, which would generate a new gait trajectory for the ankle during the stance phase of gait. The goal of this simulation was to validate the …


Steady State Simulation Of Pyrolysis Gases In An Inductively Coupled Plasma Facility, Nicholas C. Martin Jan 2017

Steady State Simulation Of Pyrolysis Gases In An Inductively Coupled Plasma Facility, Nicholas C. Martin

Graduate College Dissertations and Theses

An important step in the more efficient use of PICA (Phenolic Impregnated Carbon Ablator) as a Thermal Protection System (TPS) material for spacecraft is the understanding of its pyrolysis mechanics. The gases released during pyrolysis and their subsequent interaction with the reactive plasma environment is not yet well understood. The surface recession of PICA as it ablates during testing only makes the study and characterization of the chemical reactions more difficult. To this end, a probe has been designed for this study to simulate, in steady state, the pyrolysis gases within the UVM 30kW Inductively Coupled Plasma (ICP) Torch Facility. …