Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Engineering

Mechanics Of Electrode Materials In Lithium Battery Applications., Jubin Chen Aug 2015

Mechanics Of Electrode Materials In Lithium Battery Applications., Jubin Chen

Electronic Theses and Dissertations

During lithiation and detlithiation, substantial volumetric changes occur within the electrode materials used for rechargeable lithium batteries. The magnitude of these deformations is inherently linked to the electrical capacity of the battery electrical capacity, which tends to degrade with repeated cycling. In this dissertation, the relationship between electrical discharge capacity and mechanical deformation state is examined using in-situ imaging of the working electrode surface within a custom CR2032 coin cell lithium battery. Digital image correlation is used to quantify electrode strains throughout the discharge-charge process. The effect of constraint due to substrate stiffness is investigated for two film materials: traditional …


Nanofiber-Based Membrane Separators For Lithium-Ion Batteries, Mataz Alcoutlabi, Hun Lee, Xiangwu Zhang Jun 2015

Nanofiber-Based Membrane Separators For Lithium-Ion Batteries, Mataz Alcoutlabi, Hun Lee, Xiangwu Zhang

Mechanical Engineering Faculty Publications and Presentations

Nanofiber-based membranes were prepared by two different methods for use as separators for Lithium-ion batteries (LIBs). In the first method, Electrospinning was used for the fabrication of Polyvinylidene fluoride PVDF nanofiber coatings on polyolefin microporous membrane separators to improve their electrolyte uptake and electrochemical performance. The nanofiber-coated membrane separators show better electrolyte uptake and ionic conductivity than that for the uncoated membranes. In the second method, Forcespinning® (FS) was used to fabricate fibrous cellulose membranes as separators for LIBs. The cellulose fibrous membranes were made by the Forcespinning® of a cellulose acetate solution precursor followed by a subsequent alkaline hydrolysis …


Vanadium Trichloride Thermochemical Solar Energy Storage System Analysis., Caleb Michael Rogers May 2015

Vanadium Trichloride Thermochemical Solar Energy Storage System Analysis., Caleb Michael Rogers

Electronic Theses and Dissertations

As annual energy consumption grows, developing renewable solar energy conversion systems, storage systems, and high density electrical energy production systems is growing increasingly important. The proposed system utilizes vanadium trichloride thermal decomposition to produce chlorine gas and vanadium dichloride. A second reaction combines gaseous hydrogen chloride and the product vanadium dichloride to reform vanadium trichloride and produce hydrogen gas. Hydrogen gas and chlorine gas can be stored indefinitely and electrical energy is obtained from the chemicals by a non-humidified dry membrane hydrogen – chlorine fuel cell. The fuel cell produces the gaseous hydrogen chloride needed to reform vanadium trichloride. The …


A Novel Intermediate-Temperature All Ceramic Iron–Air Redox Battery: The Effect Of Current Density And Cycle Duration, Xuan Zhao, Xue Li, Yunhui Gong, Nansheng Xu, Kevin Huang Feb 2015

A Novel Intermediate-Temperature All Ceramic Iron–Air Redox Battery: The Effect Of Current Density And Cycle Duration, Xuan Zhao, Xue Li, Yunhui Gong, Nansheng Xu, Kevin Huang

Kevin Huang

We here report the energy storage characteristics of a new all ceramic iron–air redox battery comprising of a reversible solid oxide fuel cell as the charger/discharger and a Fe–FeOx redox couple as the chemical storage bed. The effects of current density and cycle duration on specific energy and round trip efficiency of the new battery have been systematically studied at 650°C and 550°C. The results explicitly show that current density is the most influential variable on the performance, signifying the importance of improving electrochemical performance of the reversible solid oxide fuel cell.


Enhanced Reversibility And Durability Of A Solid Oxide Fe–Air Redox Battery By Carbothermic Reaction Derived Energy Storage Materials, Xuan Zhao, Xue Li, Yunhui Gong, Kevin Huang Feb 2015

Enhanced Reversibility And Durability Of A Solid Oxide Fe–Air Redox Battery By Carbothermic Reaction Derived Energy Storage Materials, Xuan Zhao, Xue Li, Yunhui Gong, Kevin Huang

Kevin Huang

The recently developed solid oxide metal–air redox battery is a new technology capable of high-rate chemistry. Here we report that the performance, reversibility and stability of a solid oxide iron–air redox battery can be significantly improved by nanostructuring energy storage materials from a carbothermic reaction.


A High Energy Density All Solid-State Tungsten-Air Battery, Xuan Zhao, Xue Li, Yunhui Gong, Nansheng Xu, Kevin Gregory Romito, Kevin Huang Feb 2015

A High Energy Density All Solid-State Tungsten-Air Battery, Xuan Zhao, Xue Li, Yunhui Gong, Nansheng Xu, Kevin Gregory Romito, Kevin Huang

Kevin Huang

An all solid-state tungsten–air battery using solid oxide–ion electrolyte is demonstrated as a new chemistry for advanced energy storage. The unique design of separated energy storage from the electrodes allows for free volume expansion–contraction during electrical cycles and new metal–air chemistry to be explored conveniently.


Carbon Based Nano-Composite Materials For Energy Storage Applications, Gerardo Rodriguez Melo Jan 2015

Carbon Based Nano-Composite Materials For Energy Storage Applications, Gerardo Rodriguez Melo

Open Access Theses & Dissertations

Energy storage systems and devices are an integral part of advanced electronic technology. Electronic technology is ever-advancing, but in order to do so, it must be supported by all its systems. The energy storage system is one key system that may dictate the performance and limitation of such electronics. Thus, research emphasis on energy storage devices has been on improving the performance of energy storage devices, such as: improved energy and power density, increased stability and cycle life, as well as reduced costs. Lithium-ion-batteries, and supercapacitors offer the potential to meet energy storage demands and to be improved further upon. …


Electric Vehicles In Smart Grids: Performance Considerations, Uttam Kumar Deb Nath Jan 2015

Electric Vehicles In Smart Grids: Performance Considerations, Uttam Kumar Deb Nath

Theses: Doctorates and Masters

Distributed power system is the basic architecture of current power systems and demands close cooperation among the generation, transmission and distribution systems. Excessive greenhouse gas emissions over the last decade have driven a move to a more sustainable energy system. This has involved integrating renewable energy sources like wind and solar power into the distributed generation system. Renewable sources offer more opportunities for end users to participate in the power delivery system and to make this distribution system even more efficient, the novel "Smart Grid" concept has emerged. A Smart Grid: offers a two-way communication between the source and the …