Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Fatigue-Induced Failure In Horizontal-Axis Wind-Turbine (Hawt) Blades And Hawt Drivetrain Gears, Varun Chenna Aug 2014

Fatigue-Induced Failure In Horizontal-Axis Wind-Turbine (Hawt) Blades And Hawt Drivetrain Gears, Varun Chenna

All Theses

Wind energy is one of the most promising and the fastest growing installed alternative-energy production technologies. In fact, it is anticipated that by 2030, at least 20% of the U.S. energy needs will be met by various onshore and offshore wind-farms [a collection of wind-turbines (converters of wind energy into electrical energy) at the same location]. A majority of wind turbines nowadays fall into the class of the so-called Horizontal Axis Wind Turbines (HAWTs). Turbine blades and the gearbox are perhaps the most critical components/subsystems in the present designs of HAWTs. The combination of high failure rates (particularly those associated …


Effects Of Local Ph On The Formation And Regulation Of Cristae Morphologies, Dong Hoon Song, Jonghyun Park, Martin A. Philbert, Ann Marie Sastry, Wei Lu Aug 2014

Effects Of Local Ph On The Formation And Regulation Of Cristae Morphologies, Dong Hoon Song, Jonghyun Park, Martin A. Philbert, Ann Marie Sastry, Wei Lu

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Cristae, folded subcompartments of the inner mitochondrial membrane (IMM), have complex and dynamic morphologies. Since cristae are the major site of adenosine triphosphate synthesis, morphological changes of cristae have been studied in relation to functional states of mitochondria. In this sense, investigating the functional and structural significance of cristae may be critical for understanding progressive mitochondrial dysfunction. However, the detailed mechanisms of the formation and regulation of these cristae structures have not been fully elucidated. Among the hypotheses concerning the regulation of cristae morphologies, we exclusively investigate the effects of the local pH gradient on the cristae morphologies by using …


Study Of Chaotic Ultrasound And Frequency Sweep Excitations In Sonic Ir Nde Technology, Ding Zhang Jan 2014

Study Of Chaotic Ultrasound And Frequency Sweep Excitations In Sonic Ir Nde Technology, Ding Zhang

Wayne State University Dissertations

Sonic Infrared (IR) Imaging Nondestructive Evaluation (NDE) technology has shown inherent advantages, such as fast detection for all direction and all dimension flaws, for both metal and composite materials. The purpose of this dissertation is to study and investigate the physical process of two most important methods, frequency sweep excitation and chaotic excitation, to improve the defect detection ability of Sonic IR technology.

The tool used in our study is known as finite element analysis (FEA). According to test process of Sonic IR technology, some special technologies were developed in FEA simulation, such as creating cracks with flat contact surfaces …


A Practical Tool For The Determination Of Surface Stresses In Railroad Bearings With Different Contact Geometries And Load Conditions Using Finite Element Analysis, Michael A. Mason Jan 2014

A Practical Tool For The Determination Of Surface Stresses In Railroad Bearings With Different Contact Geometries And Load Conditions Using Finite Element Analysis, Michael A. Mason

Theses and Dissertations

The connection between contact geometry and fatigue in tapered roller bearings utilized in the railroad environment is still of interest. Roller bearings for railroad applications are typically precision ground with crowned contact geometries to prevent edge loading of components. This normally results in completely elastic Hertzian contact stresses under standard railcar loads. However, under extreme load conditions, detrimental edge loading has been known to occur. It is proposed to develop a tool, using finite element analysis, that can be utilized to optimize complex raceway crown geometries for severe applications.

A successful implementation of this tool is presented and validated using …


Modeling And Simulation Of Hydrokinetic Composite Turbine System, Haifeng Li Jan 2014

Modeling And Simulation Of Hydrokinetic Composite Turbine System, Haifeng Li

Doctoral Dissertations

"The utilization of kinetic energy from the river is promising as an attractive alternative to other available renewable energy resources. Hydrokinetic turbine systems are advantageous over traditional dam based hydropower systems due to "zero-head" and mobility. The objective of this study is to design and analyze hydrokinetic composite turbine system in operation. Fatigue study and structural optimization of composite turbine blades were conducted. System level performance of the composite hydrokinetic turbine was evaluated. A fully-coupled blade element momentum-finite element method algorithm has been developed to compute the stress response of the turbine blade subjected to hydrodynamic and buoyancy loadings during …