Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Sr2Fe1.5Mo0.5O6-Δ – Sm0.2Ce0.8O1.9 Composite Anodes For Intermediate-Temperature Solid Oxide Fuel Cells, Beibei He, Ling Zhao, Shuxiang Song, Tong Liu, Fanglin Chen, Changrong Xia Mar 2012

Sr2Fe1.5Mo0.5O6-Δ – Sm0.2Ce0.8O1.9 Composite Anodes For Intermediate-Temperature Solid Oxide Fuel Cells, Beibei He, Ling Zhao, Shuxiang Song, Tong Liu, Fanglin Chen, Changrong Xia

Faculty Publications

Sr2Fe1.5Mo0.5O6−δ (SFM) perovskite is carefully investigated as an anode material for solid oxide fuel cells with LaGaO3-based electrolytes. Its electronic conductivity under anodic atmosphere is measured with four-probe method while its ionic conductivity is determined with oxygen permeation measurement. Samaria doped ceria (SDC) is incorporated into SFM electrode to improve the anodic performance. A strong relation is observed between SDC addition and polarization losses, suggesting that the internal SFM-SDC contacts are active for H2 oxidation. The best electrode performance is achieved for the composite with 30 wt% SDC addition, resulting …


Oxidation Of Borides And Carbides With Y2o3 And Ta Additions, Salvador Manuel Rodriguez Jan 2012

Oxidation Of Borides And Carbides With Y2o3 And Ta Additions, Salvador Manuel Rodriguez

Open Access Theses & Dissertations

The study presented here describes an investigation of an oxidation scale of a fully-sintered Y2O3-ZrB2-TiC composite exposed in air at 1173K. Upon oxidation of the boride/carbide, a ZrO2-TiO2 was expected to form similar to the ZrO2-SiO2 dual scale of an oxidized ZrB2-SiC. The 47wt% Y2O3-38wt%ZrB2-16wt%TiC composite formed a dual scale consisting primarily of an Y2O3-ZrO2-TiC inner scale with an outer scale of ZrO2-TiO2-Y2O3.

The samples oxidized with a parabolic layer growth allowing the calculation of the effective diffusion coefficient indicating that the oxidation was controlled by oxygen ingress through primarily the ZrO2-Y2O3 phase. The oxygen potential between the inner layer …