Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Engineering

Spring 2011: Engr 2320: Mechanics Of Solids And Structures: Information About Course: Course Syllabus, Christopher Lee Aug 2011

Spring 2011: Engr 2320: Mechanics Of Solids And Structures: Information About Course: Course Syllabus, Christopher Lee

Christopher Lee

This course covers the principles of statics of structures and mechanics of materials. The focus is on the concepts of stress and strain as related to applied loads (axial, shear, torsion, bending) and to resulting deformation. Students will learn how the principles of mechanics can be applied to mechanical design through modeling, quantitative analysis, strain gauge measurements, and computational simulation. The use of a commercial finite element package is introduced.


Spring 2011 Engr 2320: Mechanics Of Solids And Structures: Information About Course: Course Schedule, Christopher Lee Aug 2011

Spring 2011 Engr 2320: Mechanics Of Solids And Structures: Information About Course: Course Schedule, Christopher Lee

Christopher Lee

This course covers the principles of statics of structures and mechanics of materials. The focus is on the concepts of stress and strain as related to applied loads (axial, shear, torsion, bending) and to resulting deformation. Students will learn how the principles of mechanics can be applied to mechanical design through modeling, quantitative analysis, strain gauge measurements, and computational simulation. The use of a commercial finite element package is introduced.


Spring 2011 Engr 2320: Mechanics Of Solids And Structures: Course Materials: Final Project Instructions, Christopher Lee Aug 2011

Spring 2011 Engr 2320: Mechanics Of Solids And Structures: Course Materials: Final Project Instructions, Christopher Lee

Christopher Lee

This course covers the principles of statics of structures and mechanics of materials. The focus is on the concepts of stress and strain as related to applied loads (axial, shear, torsion, bending) and to resulting deformation. Students will learn how the principles of mechanics can be applied to mechanical design through modeling, quantitative analysis, strain gauge measurements, and computational simulation. The use of a commercial finite element package is introduced.


Spring 2011 Engr 2320: Mechanics Of Solids And Structures: Course Materials: Robot Leg Exercise, Christopher Lee Aug 2011

Spring 2011 Engr 2320: Mechanics Of Solids And Structures: Course Materials: Robot Leg Exercise, Christopher Lee

Christopher Lee

This course covers the principles of statics of structures and mechanics of materials. The focus is on the concepts of stress and strain as related to applied loads (axial, shear, torsion, bending) and to resulting deformation. Students will learn how the principles of mechanics can be applied to mechanical design through modeling, quantitative analysis, strain gauge measurements, and computational simulation. The use of a commercial finite element package is introduced.


Spring 2011 Engr 2320: Mechanics Of Solids And Structures: Course Materials: Exam 1, Christopher Lee Aug 2011

Spring 2011 Engr 2320: Mechanics Of Solids And Structures: Course Materials: Exam 1, Christopher Lee

Christopher Lee

This course covers the principles of statics of structures and mechanics of materials. The focus is on the concepts of stress and strain as related to applied loads (axial, shear, torsion, bending) and to resulting deformation. Students will learn how the principles of mechanics can be applied to mechanical design through modeling, quantitative analysis, strain gauge measurements, and computational simulation. The use of a commercial finite element package is introduced.


Spring 2011 Engr 2320: Mechanics Of Solids And Structures: Course Materials: Final Exam, Christopher Lee Aug 2011

Spring 2011 Engr 2320: Mechanics Of Solids And Structures: Course Materials: Final Exam, Christopher Lee

Christopher Lee

This course covers the principles of statics of structures and mechanics of materials. The focus is on the concepts of stress and strain as related to applied loads (axial, shear, torsion, bending) and to resulting deformation. Students will learn how the principles of mechanics can be applied to mechanical design through modeling, quantitative analysis, strain gauge measurements, and computational simulation. The use of a commercial finite element package is introduced.


Spring 2011 Engr 2320: Mechanics Of Solids And Structures: Course Materials: Exam 2, Christopher Lee Aug 2011

Spring 2011 Engr 2320: Mechanics Of Solids And Structures: Course Materials: Exam 2, Christopher Lee

Christopher Lee

This course covers the principles of statics of structures and mechanics of materials. The focus is on the concepts of stress and strain as related to applied loads (axial, shear, torsion, bending) and to resulting deformation. Students will learn how the principles of mechanics can be applied to mechanical design through modeling, quantitative analysis, strain gauge measurements, and computational simulation. The use of a commercial finite element package is introduced.


Micromechanical Simulation For Fatigue Damage Incubation, Tong Li May 2011

Micromechanical Simulation For Fatigue Damage Incubation, Tong Li

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Micromechanical simulations are conducted to quantify the influence of microstructure attributes to the formation of small fatigue cracks. Three wrought aluminum alloys (7075-T651, 2024-T3, virtual material) with fractured particle are studied to quantify the influence of material’s yield strength and ultimate strength to material’s fatigue resistance. Laser Engineered Net Shaping (LENS) material with pores of various spatial distribution and particles are simulated for the microplasticity and its effects on fatigue incubation.

A cohesive zone model is used to study the interface cohesive behavior’s influence to the cyclic driving mechanisms. Different simulations based on different interfacial crack geometries and particle shapes …