Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Experimental Characterization Of Flow Induced Vibration In Turbulent Pipe Flow, Andrew S. Thompson Aug 2009

Experimental Characterization Of Flow Induced Vibration In Turbulent Pipe Flow, Andrew S. Thompson

Theses and Dissertations

This thesis presents results of an experimental investigation that characterizes the wall vibration of a pipe with turbulent flow passing through it. Specifically, experiments were conducted using a water flow loop to address three general phenomena. The topics of investigation were: 1) How does the pipe wall vibration depend on the average flow speed, pipe diameter, and pipe thickness for an unsupported pipe? 2) How does the behavior change if the pipe is clamp supported at various clamping lengths? 3) What influence does turbulence generation caused by holed baffle plates exert on the pipe response? A single pipe material (PVC) …


Analysis Of Induced Vibrations In Fully-Developed Turbulent Pipe Flow Using A Coupled Les And Fea Approach, Thomas P. Shurtz Aug 2009

Analysis Of Induced Vibrations In Fully-Developed Turbulent Pipe Flow Using A Coupled Les And Fea Approach, Thomas P. Shurtz

Theses and Dissertations

Turbulent flow induced pipe vibration is a phenomenon that has been observed but not fully characterized. This thesis presents research involving numerical simulations that have been used to characterize pipe vibration resulting from fully developed turbulent flow. The vibration levels as indicated by: pipe surface displacement, velocity, and acceleration are characterized in terms of the parameters that exert influence. The influences of geometric and material properties of the pipe are investigated for pipe thickness in the range 1 to 8 mm at a diameter of 0.1015 m. The effects of pipe elastic modulus are explored from 3 to 200 GPa. …


Drag Reduction In Turbulent Flows Over Micropatterned Superhydrophobic Surfaces, Robert J. Daniello Jan 2009

Drag Reduction In Turbulent Flows Over Micropatterned Superhydrophobic Surfaces, Robert J. Daniello

Masters Theses 1911 - February 2014

Periodic, micropatterned superhydrophobic surfaces, previously noted for their ability to provide drag reduction in the laminar flow regime, have been demonstrated capable of reducing drag in the turbulent flow regime as well. Superhydrophobic surfaces contain micro or nanoscale hydrophobic features which can support a shear-free air-water interface between peaks in the surface topology. Particle image velocimetry and pressure drop measurements were used to observe significant slip velocities, shear stress, and pressure drop reductions corresponding to skin friction drag reductions approaching 50%. At a given Reynolds number, drag reduction was found to increase with increasing feature size and spacing, as in …


Effect Of Rib Turbulators On Heat Transfer Performance In Stationary Ribbed Channels, Aravind Rohan Sampath Jan 2009

Effect Of Rib Turbulators On Heat Transfer Performance In Stationary Ribbed Channels, Aravind Rohan Sampath

ETD Archive

The thermal performance was examined computationally for the stationary channels with rib turbulators oriented at 90 degrees. Ribs were placed on opposite walls and the heat transfer coefficients and frictional loss were calculated. Three stationary channels with aspect ratios (W/H) 1, 2 and 4 were considered for the analysis. The thermal performance was measured by calculating the Nusselt number and frictional losses. Square ribs (w/e = 1) were considered as the baseline configuration. The rib width and rib spacing varies while the rib height is maintained constant. Rib spacing (P/e) of 10 and 20 and rib width to rib height …


Computational And Experimental Investigation Of The Flow Structure And Vortex Dynamics In The Wake Of A Formula 1 Tire, John Axerio, Gianluca Iaccarino, Emin Issakhanian, Chris Elkins, John Eaton Jan 2009

Computational And Experimental Investigation Of The Flow Structure And Vortex Dynamics In The Wake Of A Formula 1 Tire, John Axerio, Gianluca Iaccarino, Emin Issakhanian, Chris Elkins, John Eaton

Mechanical Engineering Faculty Works

The flowfield around a 60% scale stationary Formula 1 tire in contact with the ground in a closed wind tunnel was examined experimentally in order to assess the accuracy of different turbulence modeling techniques. The results of steady RANS and Large Eddy Simulation (LES) were compared with PIV data, which was obtained within the same project. The far wake structure behind the wheel was dominated by two strong counter-rotating vortices. The locations of the vortex cores, extracted from the LES and PIV data as well as computed using different RANS models, showed that the LES predictions are closest to the …