Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Introductory Lectures On Turbulence: Physics, Mathematics And Modeling, James M. Mcdonough Jan 2007

Introductory Lectures On Turbulence: Physics, Mathematics And Modeling, James M. Mcdonough

Mechanical Engineering Textbook Gallery

From Chapter 1:

The understanding of turbulent behavior in flowing fluids is one of the most intriguing, frustrating— and important—problems in all of classical physics.

The problem of turbulence has been studied by many of the greatest physicists and engineers of the 19th and 20th Centuries, and yet we do not understand in complete detail how or why turbulence occurs, nor can we predict turbulent behavior with any degree of reliability, even in very simple (from an engineering perspective) flow situations. Thus, study of turbulence is motivated both by its inherent intellectual challenge and by the practical utility of a …


Developing Dns Tools To Study Channel Flow Over Realistic Plaque Morphology, Ryan M. Beaumont Jan 2007

Developing Dns Tools To Study Channel Flow Over Realistic Plaque Morphology, Ryan M. Beaumont

Electronic Theses and Dissertations

In a normal coronary artery, the flow is laminar and the velocity is parabolic in nature. Over time, plaques deposit along the artery wall, narrowing the artery and creating an obstruction, a stenosis. As the stenosis grows, the characteristics of the flow change and transition occurs, resulting in turbulent flow distal to the stenosis. To date, direct numerical simulation (DNS) of turbulent flow has been performed in a number of studies to understand how stenosis modifies flow dynamics. However, the effect of the actual shape and size of the obstruction has been disregarded in these DNS studies. An ideal approach …


Turbulence Modeling For Film Cooling Flows, Asif Hoda Jan 2007

Turbulence Modeling For Film Cooling Flows, Asif Hoda

LSU Doctoral Dissertations

An improved two equation turbulence model has been developed in this dissertation to better predict the complex film cooling flow field that is formed from the interaction of a coolant jet and a crossflow over a modeled turbine blade surface. Film cooling of turbine blades is commonly employed to effectively protect turbine blades from thermal failure and thereby to allow higher inlet temperatures in order to increase the efficiency of gas turbine engines. Film cooling involves the injection of rows of coolant jets from slots on the surface of a turbine blade which is then bent over by the crossflow …