Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering

Theses/Dissertations

Kinematics

Articles 1 - 30 of 41

Full-Text Articles in Engineering

Summonable Construction Delivery Robot, Kevin M. Lewis May 2024

Summonable Construction Delivery Robot, Kevin M. Lewis

Honors Capstones

In many different construction industries, there is a need for tools, parts, and other necessary items to be transported quickly and efficiently over various types of terrain. Human resources have often been used to address these needs, which can become very time and cost inefficient over long periods. The design proposal here is aimed at addressing this need by developing an autonomous outdoor mobile robot based on a quadrupedal robot design. This approach differs by incorporating a wheeled and quadrupedal hybrid actuation system that provides terrain negotiation and speed at the appropriate times. The team uses Robot Operating System (ROS) …


An Automated, Deep Learning Approach To Systematically & Sequentially Derive Three-Dimensional Knee Kinematics Directly From Two-Dimensional Fluoroscopic Video, Viet Dung Nguyen Aug 2023

An Automated, Deep Learning Approach To Systematically & Sequentially Derive Three-Dimensional Knee Kinematics Directly From Two-Dimensional Fluoroscopic Video, Viet Dung Nguyen

Doctoral Dissertations

Total knee arthroplasty (TKA), also known as total knee replacement, is a surgical procedure to replace damaged parts of the knee joint with artificial components. It aims to relieve pain and improve knee function. TKA can improve knee kinematics and reduce pain, but it may also cause altered joint mechanics and complications. Proper patient selection, implant design, and surgical technique are important for successful outcomes. Kinematics analysis plays a vital role in TKA by evaluating knee joint movement and mechanics. It helps assess surgery success, guides implant and technique selection, informs implant design improvements, detects problems early, and improves patient …


Redundant Kinematics Solution For A Combined 6dof Robotic Manipulator And 2dof Part Positioner In A Waam Application, Ethan C. Vals May 2022

Redundant Kinematics Solution For A Combined 6dof Robotic Manipulator And 2dof Part Positioner In A Waam Application, Ethan C. Vals

Masters Theses

A typical wire arc additive manufacturing (WAAM) robot cell consists of a 6 DOF robot manipulator and a 2 DOF part positioner. Since the WAAM process requires a minimum of 5 DOFs, there are three redundant DOFs in the system that can be utilized to improve the robot manipulator positioning during part printing. In this thesis, the redundant kinematics of a manipulator and part positioner robot system are solved and then implemented on an actual robot system. The inverse kinematics of the manipulator and part positioner are solved as a kinematic chain using the pseudo-inverse Jacobian method. The two DOFs …


R/C Baja: Drivetrain, Connor T. Donovan Jan 2022

R/C Baja: Drivetrain, Connor T. Donovan

All Undergraduate Projects

The Central Washington University Mechanical Engineering Technology Department hosts an annual R/C Baja competition in which R/C cars fabricated by student teams are put through a series of courses and tests to determine which team's vehicle is best. The goal of this project was to create a functioning drivetrain that conveys power from the battery to the wheels and provides control of the vehicle. A list of requirements for the drivetrain was created to ensure that the vehicle will not only function, but that it will actually succeed in the competition. These requirements included that the vehicle must achieve a …


Using Dynamic In Vivo Kinematics For Subject-Specific Calibration Of Knee Ligament Parameters, Stephen Nelson Dec 2021

Using Dynamic In Vivo Kinematics For Subject-Specific Calibration Of Knee Ligament Parameters, Stephen Nelson

Boise State University Theses and Dissertations

In vivo clinical studies are the optimal way to investigate the biomechanical outcomes of new prosthetic devices. This particular style of testing can be difficult and, in certain cases, unethical to perform. The testing of unproven devices, surgical techniques, and materials put patients at risk from unanticipated outcomes in how these devices respond to the in vivo environment and patient-specific loading conditions. Biomechanical computational models were developed to provide validation to new devices prior to clinical testing. Computational models for use in optimizing knee prosthetics frequently include ligament representations, but these representations have inherent uncertainty due to wide intersubject variation …


Broadening The Capability Of Kinetics Analysis In Biomechanics, Nicholas Nelson Jan 2021

Broadening The Capability Of Kinetics Analysis In Biomechanics, Nicholas Nelson

Electronic Theses and Dissertations

Two studies are discussed in this manuscript each preceded by a literature review of the topic. The first review and study explore agility movements and the effect that alternative upper designs in shoes might have on ground reaction force measures of performance. The second review and study evaluate methods of predicting ground reaction forces without the use of a force platform. A method of using effective forces and ways of improving its accuracy are evaluated in depth.


Brian Valdez - Dynamics And Control Of A 3-Dof Manipulator With Deep Learning Feedback, Brian Orlando Valdez Jan 2020

Brian Valdez - Dynamics And Control Of A 3-Dof Manipulator With Deep Learning Feedback, Brian Orlando Valdez

Open Access Theses & Dissertations

With the ever-increasing demands in the space domain and accessibility to low-cost small satellite platforms for educational and scientific projects, efforts are being made in various technology capacities including robotics and artificial intelligence in microgravity. The MIRO Center for Space Exploration and Technology Research (cSETR) prepares the development of their second nanosatellite to launch to space and it is with that opportunity that a 3-DOF robotic arm is in development to be one of the payloads in the nanosatellite. Analyses, hardware implementation, and testing demonstrate a potential positive outcome from including the payload in the nanosatellite and a deep learning …


Design, Analysis, And Optimization Of Compactible Origami-Inspired Shelters, Anthony M. Verzoni Aug 2019

Design, Analysis, And Optimization Of Compactible Origami-Inspired Shelters, Anthony M. Verzoni

Electronic Theses and Dissertations

Origami-inspired design is a growing field with numerous engineering applications, including rapidly compactable and erectable shelters with nondeformed flat panels, which are considered in this research. Shelter geometry is controlled by the shape, size, and connectivity of individual panels that must fold and unfold in a kinematically compliant manner resulting in no panel intersection. Panel size and shape are altered to yield shelter designs with varying volumetric capacities. Thin panels are initially used to study the kinematics of shelter concepts as traditional origami. With increasing panel thickness, the location of fold or hinge lines exerts a large influence on the …


In Vitro Biomechanical Analyses Of The Pcl And Medial Ligaments Of The Human Knee, Alireza Moslemian Aug 2019

In Vitro Biomechanical Analyses Of The Pcl And Medial Ligaments Of The Human Knee, Alireza Moslemian

Electronic Thesis and Dissertation Repository

Previous studies have shown that surgical treatments of PCL injuries are not successful in all cases and there is room for improvement. The effectiveness of an isolated PCL reconstruction, in the setting of what actually is a multi-ligament injury, may be inadequate, and therefore the biomechanical contribution of other ligaments in a PCL-deficient knee need to be better understood.

A new apparatus was used to analyze the effect of medial ligaments transection on the kinematics of the PCL-deficient knee during simulated clinical tests and activities of daily living. We observed that the anterior translation of the medial side of the …


The Development Of A Viscoelastic Ellipsoidal Model For Use In Measuring Plantar Tissue Material Properties During Walking, Jessica Lee Deberardinis May 2019

The Development Of A Viscoelastic Ellipsoidal Model For Use In Measuring Plantar Tissue Material Properties During Walking, Jessica Lee Deberardinis

UNLV Theses, Dissertations, Professional Papers, and Capstones

Introduction: The mechanical characteristics of the plantar tissues during walking is not well understood as most of the current research focuses on testing specific plantar regions in cadavers or while the feet of the participants are raised. In this work, it is hypothesized that a viscoelastic geometric ellipsoid model used to assess multiple structures of the foot would be accurate and robust. This model would be participant-specific and applicable to the entire stance phase of gait.

Methods: The proposed viscoelastic ellipsoid model would represent several key anatomical areas: Heel, Posterior Midfoot, Anterior Midfoot, Metatarsals 1-2, Metatarsals 3-5, Toe 1, Toe …


Design Of Shape-Morphing Structures Consisting Of Bistable Compliant Mechanisms, Rami Alfattani Mar 2019

Design Of Shape-Morphing Structures Consisting Of Bistable Compliant Mechanisms, Rami Alfattani

USF Tampa Graduate Theses and Dissertations

This dissertation presents a design concept for shape-morphing structures that have two stable configurations. The design concept defines the methodology of transforming a planar structural shape into spatial structural shape using bistable compliant mechanisms. Bistable complaint mechanisms are used to achieve structural stable configurations. The dissertation incorporating geometrical relationships for the mechanisms that form the primary structure described in step-by-step process. This dissertation implements the design layouts for designer to creating shape-morphing structures including origami. The novel contribution of the work is classified in three models. The first model presents a methodology to induce bistability behavior into an origami reverse …


Side-To-Side Comparison Of Total Shoulder Arthroplasty And Intact Function In Individuals, Sarah Rose Walden Jan 2019

Side-To-Side Comparison Of Total Shoulder Arthroplasty And Intact Function In Individuals, Sarah Rose Walden

Electronic Theses and Dissertations

Total Shoulder Arthroplasty (TSA) is a surgery which replaces the shoulder joint, or the interface between the humerus and the scapula glenoid. To test TSA success, most prior research compares patients with TSA to healthy controls. However, the shoulder anthropometry, motion, and musculature of individuals varies widely across the population making it important to assess TSA performance in individuals. The overall goal of this study is to determine if patients with one of two TSA implant designs on one side achieve the same range of motion as their intact side, and if so to find if they compensate using increased …


Application And Evaluation Of Lighthouse Technology For Precision Motion Capture, Soumitra Sitole Oct 2018

Application And Evaluation Of Lighthouse Technology For Precision Motion Capture, Soumitra Sitole

Masters Theses

This thesis presents the development towards a system that can capture and quantify motion for applications in biomechanical and medical fields demanding precision motion tracking using the lighthouse technology. Commercially known as SteamVR tracking, the lighthouse technology is a motion tracking system developed for virtual reality applications that makes use of patterned infrared light sources to highlight trackers (objects embedded with photodiodes) to obtain their pose or spatial position and orientation. Current motion capture systems such as the camera-based motion capture are expensive and not readily available outside of research labs. This thesis provides a case for low-cost motion capture …


A Definition And Demonstration Of Developable Mechanisms, Trent Karl Zimmerman Apr 2018

A Definition And Demonstration Of Developable Mechanisms, Trent Karl Zimmerman

Theses and Dissertations

There is an increasing need for compact mechanical systems that can accomplish sophisticated tasks. Technologies like ortho-planar and lamina emergent mechanisms (LEMs) have been developed to satisfy needs like these by stowing in planar sheets from which they emerge to perform their function. They can be compact, lightweight, monolithic, scalable, and can withstand harsh environments. They are limited, however, by their base element---planar surfaces. Applications requiring these advantages often include curved surfaces, like aircraft wings, needles, and automotive bodies. In this research, developable mechanisms are presented as a solution to satisfy the need for mechanisms that can conform to or …


Developing Motion Platform Dynamics For Studying Biomechanical Responses During Exercise For Human Spaceflight Applications, Kaitlin Lostroscio Mar 2018

Developing Motion Platform Dynamics For Studying Biomechanical Responses During Exercise For Human Spaceflight Applications, Kaitlin Lostroscio

USF Tampa Graduate Theses and Dissertations

In future human spaceflight missions, with prolonged exposure to microgravity, resistive and aerobic exercises will be countermeasures for bone loss, muscle loss, and decreased aerobic capacity. Two of the exercises of interest are squats and rowing. The cyclic forces produced during these exercises are at relatively low frequencies which are likely to excite structural resonances of space vehicles. Vibration Isolation Systems (VIS) are being designed to be paired with future exploration exercise devices in order to prevent these cyclic exercise forces from impacting the space vehicle. The VIS may be configured such that a platform supports the human and exercise …


Rogue Rotary - Modular Robotic Rotary Joint Design, Sean Wesley Murphy, Tyler David Riessen, Jacob Mark Triplett Dec 2017

Rogue Rotary - Modular Robotic Rotary Joint Design, Sean Wesley Murphy, Tyler David Riessen, Jacob Mark Triplett

Mechanical Engineering

This paper describes the design process from ideation to test validation for a singular robotic joint to be configured into a myriad of system level of robots.


Design And Development Of A Robot Guided Rehabilitation Scheme For Upper Extremity Rehabilitation, Md Assad-Uz-Zaman Aug 2017

Design And Development Of A Robot Guided Rehabilitation Scheme For Upper Extremity Rehabilitation, Md Assad-Uz-Zaman

Theses and Dissertations

To rehabilitate individuals with impaired upper-limb function, we have designed and developed a robot guided rehabilitation scheme. A humanoid robot, NAO was used for this purpose. NAO has 25 degrees of freedom. With its sensors and actuators, it can walk forward and backward, can sit down and stand up, can wave his hand, can speak to the audience, can feel the touch sensation, and can recognize the person he is meeting. All these qualities have made NAO a perfect coach to guide the subjects to perform rehabilitation exercises. To demonstrate rehabilitation exercises with NAO, a library of recommended rehabilitation exercises …


Design Optimization And Motion Planning For Pneumatically-Actuated Manipulators, Daniel Mark Bodily Apr 2017

Design Optimization And Motion Planning For Pneumatically-Actuated Manipulators, Daniel Mark Bodily

Theses and Dissertations

Soft robotic systems are becoming increasingly popular as they are generally safer, lighter, and easier to manufacture than their more rigid, traditional counterparts. These advantages allow an increased sense of freedom in both the design and operation of these platforms. In this work, we seek methods of leveraging this freedom to both design and plan motions for two different serial-chain, pneumatically actuated manipulators developed by Pneubotics, a small startup company based in San Francisco. In doing so, we focus primarily on two related endeavors: (1) the optimal kinematic design of these and other similar robots (i.e., choosing link lengths, base …


Design For Manufacturability And Assembly Of An Assistive Technician Creeper, Including Single Drive Control Of A Multi-Degree Of Freedom Kinematic Mechanism, Larry T. Wilde Jr. Dec 2016

Design For Manufacturability And Assembly Of An Assistive Technician Creeper, Including Single Drive Control Of A Multi-Degree Of Freedom Kinematic Mechanism, Larry T. Wilde Jr.

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

In 2011, a team of engineering students at Utah State University designed and built an assistive technician creeper to assist persons with lower-extremity physical disabilities to work in low-clearance areas. In order to put this technology on the market, a complete product redesign was needed to address safety and functionality concerns. This thesis outlines the specific design needs, presents the detailed design approach, and summarizes the final creeper solution. The mechanisms of the initial prototype were modified to independently incline or recline the upper body, and raise or lower the seat surface with a single motor. This will be especially …


The Feasibility Of Using A Markerless Motion Capture Sensor (Leap MotionTm Controller) Forquantitative Motor Assessment Intended For A Clinical Setting, Clay Jordan Kincaid Dec 2016

The Feasibility Of Using A Markerless Motion Capture Sensor (Leap MotionTm Controller) Forquantitative Motor Assessment Intended For A Clinical Setting, Clay Jordan Kincaid

Theses and Dissertations

Although upper limb motor impairments are common, the primary tools for assessing and tracking these impairments in a clinical setting are subjective, qualitative rating scales that lack resolution and repeatability. Markerless motion capture technology has the potential to greatly improve clinical assessment by providing quick, low-cost, and accurate tools to objectively quantify motor deficits. Here we lay some of the groundwork necessary to enable markerless motion capture systems to be used in clinical settings. First, we adapted five motor tests common in clinical assessments so they can be administered via markerless motion capture. We implemented these modified tests using a …


Statistical Modeling To Investigate Anatomy And Function Of The Knee, Lowell Matthew Smoger Jan 2016

Statistical Modeling To Investigate Anatomy And Function Of The Knee, Lowell Matthew Smoger

Electronic Theses and Dissertations

The natural knee is a hinge joint with significant functional requirements during activities of daily living; as a result, acute and chronic injuries can occur. Pathologies are influenced by joint anatomy and may include patellar maltracking, cartilage degeneration (e.g. osteoarthritis), or acute injuries such as meniscal or ligamentous tears. Population variability makes broadly applicable conclusions about etiology of these conditions from small-scale investigations challenging. The work presented in this dissertation is a demonstration of statistical modeling approaches to evaluate population variability in anatomy of the knee and function of its tibiofemoral (TF) and patellofemoral (PF) joints. Three-dimensional (3D) computational models …


Springback Force Considerations In Compliant Haptic Interfaces, Dallin R. Swiss Dec 2015

Springback Force Considerations In Compliant Haptic Interfaces, Dallin R. Swiss

Theses and Dissertations

This thesis investigates the potential benefits and challenges of using compliant mechanisms in the design of haptic interfaces. The benefits and challenges are presented with an emphasis on their inherent springback behavior and an active compensation approach. Design criteria for compliant mechanism joint candidates are reviewed and several joints are surveyed. Quantitative calculations of axial stiffness and maximum stress for five candidates are presented. Generalized analytical models of springback force and compensation torque are created to simulate the implementation of each joint candidate in a two degree-of-freedom planar pantograph. We use these models in the development and discussion of an …


Springback Force Considerations In Compliant Haptic Interfaces, Dallin R. Swiss Dec 2015

Springback Force Considerations In Compliant Haptic Interfaces, Dallin R. Swiss

Theses and Dissertations

This thesis investigates the potential benefits and challenges of using compliant mechanisms in the design of haptic interfaces. The benefits and challenges are presented with an emphasis on their inherent springback behavior and an active compensation approach. Design criteria for compliant mechanism joint candidates are reviewed and several joints are surveyed. Quantitative calculations of axial stiffness and maximum stress for five candidates are presented. Generalized analytical models of springback force and compensation torque are created to simulate the implementation of each joint candidate in a two degree-of-freedom planar pantograph. We use these models in the development and discussion of an …


A Planar Pseudo-Rigid-Body Model For Cantilevers Experiencing Combined Endpoint Forces And Uniformly Distributed Loads Acting In Parallel, Philip James Logan Jan 2015

A Planar Pseudo-Rigid-Body Model For Cantilevers Experiencing Combined Endpoint Forces And Uniformly Distributed Loads Acting In Parallel, Philip James Logan

USF Tampa Graduate Theses and Dissertations

This dissertation describes the development and effectiveness of a mathematical model used to predict the behavior of cantilever beams whose loading conditions include parallel combinations of evenly distributed loads and endpoint forces. The large deflection of cantilever beams has been widely studied. A number of models and mathematical techniques have been utilized in predicting the endpoint path coordinates and load-deflection relationships of such beams. The Pseudo-Rigid-Body Model (PRBM) is one such method which replaces the elastic beam with rigid links of a parameterized pivot location and torsional spring stiffness. In this paper, the PRBM method is extended to include cases …


Characterization Of Smoothness In Wrist Rotations, Layne Hancock Salmond Dec 2014

Characterization Of Smoothness In Wrist Rotations, Layne Hancock Salmond

Theses and Dissertations

Smoothness is a hallmark of healthy movement and has the potential to be used as a marker of recovery in rehabilitation settings. While much past research has focused on shoulder and elbow movements (reaching), little is known about movements of the wrist despite its importance in everyday life and its impairment in many neurological and biomechanical disorders. Our current lack of knowledge regarding wrist movement prevents us from improving current models, diagnosis, and treatment of wrist disorders. In particular, while movement smoothness is a well-known characteristic of reaching movements and may potentially be used to diagnose and monitor recovery from …


Pseudo-Rigid-Body Models For Approximating Spatial Compliant Mechanisms Of Rectangular Cross Section, Issa Ailenid Ramirez Nov 2014

Pseudo-Rigid-Body Models For Approximating Spatial Compliant Mechanisms Of Rectangular Cross Section, Issa Ailenid Ramirez

USF Tampa Graduate Theses and Dissertations

The objective of the dissertation is to develop and describe kinematic models (Pseudo-Rigid-Body Models) for approximating large-deflection of spatial (3D) cantilever beams that undergo multiple bending motions thru end-moment loading. Those models enable efficient design of compliant mechanisms, because they simply and accurately represent the bending and stiffness of compliant beams.

To accomplish this goal, the approach can be divided into three stages: development of the governing equations of a flexible cantilever beam, development of a PRBM for axisymmetric cantilever beams and the development of spatial PRBMs for rectangular cross-section beam with multiple end moments.

The governing equations of a …


A 3-D Pseudo-Rigid-Body Model For Rectangular Cantilever Beams With An Arbitrary Force End-Load, Jairo Renato Chimento Apr 2014

A 3-D Pseudo-Rigid-Body Model For Rectangular Cantilever Beams With An Arbitrary Force End-Load, Jairo Renato Chimento

USF Tampa Graduate Theses and Dissertations

This dissertation introduces a novel three-dimensional pseudo-rigid-body model (3-D PRBM) for straight cantilever beams with rectangular cross sections. The model is capable of capturing the behavior of the neutral axis of a beam loaded with an arbitrary force end-load. Numerical integration of a system of differential equations yields approximate displacement and orientation of the beam's neutral axis at the free end, and curvatures of the neutral axis at the fixed end. This data was used to develop the 3-D PRBM which consists of two torsional springs connecting two rigid links for a total of 2 degrees of freedom (DOF). The …


Generalizable Methods For Modeling Lumbar Spine Kinematics, Craig Joseph Simons Jan 2013

Generalizable Methods For Modeling Lumbar Spine Kinematics, Craig Joseph Simons

Electronic Theses and Dissertations

A more complete understanding of lumbar spine kinematics could improve diagnoses and treatment of low back pathologies and may advance the development of biomechanical models. Kinematics describes motion of the five lumbar vertebrae without consideration for the forces that cause the motion. Despite considerable attention from researchers and clinicians, lumbar spine kinematics are not fully understood because the anatomy is not accessible for direct observation and the complex governing biomechanics produce small magnitude, coupled intervertebral movements.

The overall goal of this project was to develop a descriptive model of intervertebral lumbar spine kinematics that is applicable to a generalizable subject …


Shield Design For Maximum Deformation In Shape-Shifting Surfaces, Daniel Eduardo Perez Jan 2013

Shield Design For Maximum Deformation In Shape-Shifting Surfaces, Daniel Eduardo Perez

USF Tampa Graduate Theses and Dissertations

This research presents the initial studies and results on shield design for Shape-Shifting Surfaces (SSSs) seeking maximum compression and maximum expansion of a unit-cell. Shape-Shifting Surfaces (SSSs) are multilayered surfaces that are able to change shape while maintaining their integrity as physical barriers. SSSs are composed of polygonal unit-cells, which can change side lengths and corner angles. These changes are made possible by each side and corner consisting of at least two different shields, or layers of material. As the layers undergo relative motion, the unit-cell changes shape. In order for the SSS to retain its effectiveness as a barrier, …


Investigation Of In-Vivo Hindfoot And Orthotic Interactions Using Bi-Planar X-Ray Fluoroscopy, Kristen M. Bushey Jun 2012

Investigation Of In-Vivo Hindfoot And Orthotic Interactions Using Bi-Planar X-Ray Fluoroscopy, Kristen M. Bushey

Electronic Thesis and Dissertation Repository

A markerless RSA method was used to determine the effect of orthotics on the normal, pes planus and pes cavus populations. Computed tomography (CT) was used to create bone models that were imported into the virtual environment. Joint coordinate systems were developed to measure kinematic changes in the hindfoot during weight-bearing gait and quiet standing. The objectives of this thesis were to (1) implement a fluoroscopy-based markerless RSA system on the foot, (2) determine the effect of various orthotics at midstance of fully weight-bearing dynamic gait, and (3) determine the effect of orthotics as measured using three different techniques. Every …