Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Development Of An Autonomous Single-Point Calibration For A Constant Voltage Hot-Wire Anemometer, Ryan Murphy Mar 2015

Development Of An Autonomous Single-Point Calibration For A Constant Voltage Hot-Wire Anemometer, Ryan Murphy

Master's Theses

Traditionally, the measurement of turbulence has been conducted using hot-wire anemometry. This thesis presents the implementation of a constant voltage hot-wire anemometer for use with the Boundary Layer Data System (BLDS). A hot-wire calibration apparatus has been developed that is capable of operation inside a vacuum chamber and flow speeds up to 50 m/s. Hot-wires operated with a constant-voltage anemometer (CVA) were calibrated at absolute static pressures down to 26 kPa. A thermal/electrical model for a hot-wire and the CVA circuit successfully predicted the measured CVA output voltage trend at reduced pressure environments; however, better results were obtained when the …


Multi-Row Film Cooling Boundary Layers, Greg Natsui Jan 2015

Multi-Row Film Cooling Boundary Layers, Greg Natsui

Electronic Theses and Dissertations

High fidelity measurements are necessary to validate existing and future turbulence models for the purpose of producing the next generation of more efficient gas turbines. The objective of the present study is to conduct several different measurements of multi-row film cooling arrays in order to better understand the physics involved with injection of coolant through multiple rows of discrete holes into a flat plate turbulent boundary layer. Adiabatic effectiveness distributions are measured for several multi-row film cooling geometries. The geometries are designed with two different hole spacings and two different hole types to yield four total geometries. One of the …


An Analytic Solution Of The Thermal Boundary Layer At The Leading Edge Of A Heated Semi-Infinite Flat Plate Under Forced Uniform Flow, Robert Jessee Jan 2015

An Analytic Solution Of The Thermal Boundary Layer At The Leading Edge Of A Heated Semi-Infinite Flat Plate Under Forced Uniform Flow, Robert Jessee

LSU Master's Theses

Abstract The heated flat plate under uniform flow has been vastly studied, with the Blasius and Pohlhausen solutions developed over 100 years ago. These solutions are numerical in nature. Here, an analytic solution is found for the temperature and velocity profiles at the leading edge of a heated flat plate under forced uniform flow. By defining a similarity variable the governing equations are reduced to a dimensionless equation with an analytic solution at the leading edge. This report gives justification for the similarity variable via scaling analysis, details the process of converting to similarity form, and presents a similarity solution. …


Modeling Two-Phase Flow And Heat Transfer In Polygonal Microchannels, Sai Sashankh Rao Jan 2015

Modeling Two-Phase Flow And Heat Transfer In Polygonal Microchannels, Sai Sashankh Rao

LSU Doctoral Dissertations

Microfluidics is a burgeoning research area with applications ranging from microfluidic cooling to biomolecule synthesis. Here we study two problems to gain an improved understanding of two-phase flow and heat transfer in microfluidic devices. We also study a third problem on boundary layer flow out of theoretical interest. In the first problem, we study the heat and mass transfer in polygonal micro heat pipes under small imposed temperature differences. A micro heat pipe, used in electronics cooling, consists of a closed polygonal microchannel filled with a wetting liquid and a long vapor bubble. We model the evaporation, fluid flow, and …