Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Thermally Developing Electro-Osmotic Convection In Circular Microchannels, Spencer L. Broderick Nov 2004

Thermally Developing Electro-Osmotic Convection In Circular Microchannels, Spencer L. Broderick

Theses and Dissertations

Thermally developing, electro-osmotically generated flow has been analyzed for a circular microtube under imposed constant wall temperature (CWT) and constant wall heat flux (CHF) boundary conditions. Established by a voltage potential gradient along the length of the microtube, the hydrodynamics of such a flow dictate either a slug flow velocity profile (under conditions of large tube radius-to-Debye length ratio, a/lambda_d) or a family of electro-osmotic flow (EOF) velocity profiles that depend on a/lambda_d. The imposed voltage gradient results in Joule heating in the fluid with an associated volumetric source of energy. For this scenario coupled with a slug flow velocity …


The Development Of An Accelerated Testing Facility For The Study Of Deposits In Land-Based Gas Turbine Engines, Jared Wilfred Jensen Jun 2004

The Development Of An Accelerated Testing Facility For The Study Of Deposits In Land-Based Gas Turbine Engines, Jared Wilfred Jensen

Theses and Dissertations

Turbine engine efficiency modeling depends on many parameters related to fluid dynamics and heat transfer. Many of these parameters change dynamically once the engine enters service and begins to experience surface degradation. This thesis presents a validation of the design and operation of an accelerated testing facility for the study of foreign deposit layers typical to the operation of land-based gas turbines. It also reports on the use of this facility in an effort to characterize the change in thermal resistance on the surface of turbine blades as deposits accumulate. The facility was designed to produce turbine deposits in a …


3-D Numerical Simulation Of Reactive Extrusion And Its Application To Polymerization Of Ε-Caprolactone In Co-Rotating Twin-Screw Extruders, Linjie Zhu May 2004

3-D Numerical Simulation Of Reactive Extrusion And Its Application To Polymerization Of Ε-Caprolactone In Co-Rotating Twin-Screw Extruders, Linjie Zhu

Dissertations

A 3-D numerical simulation model was proposed to predict the polymerization of ε-caprolactone in fully-filled conveying elements and kneading blocks of co-rotating twin-screw extruders, in which the kinetics equation for polymerization is coupled with continuity equation, momentum equation, and energy equation. With the 3-D model, parametric studies have been carried out to investigate the effects of screw configurations, screw diameter, operational conditions, values of heat from reaction, initiator concentration, and heat transfer conditions at barrel surface upon the polymerization progress. Two simulation models for the polymerization in the partially-filled channels were developed based on the conveying mechanisms of the reaction …


Turbine Blade Tip Cooling And Heat Transfer, Hasan Nasir Jan 2004

Turbine Blade Tip Cooling And Heat Transfer, Hasan Nasir

LSU Doctoral Dissertations

Turbine blade tip leakage flow from blade pressure side to suction side over the tip surface increases the thermal loading to the blade tip, leading to a high local temperature and thus, is considered one of the primary sources of blade failure. Leakage flow can be reduced by using a recessed or squealer tip blade or by cooling the blade tip to incorporate film cooling. The performance of different recessed tip geometries were investigated and compared with plane tip performance. A transient liquid crystal technique was employed to measure detailed heat transfer coefficient distributions. Coolant injection from holes located on …


Innovative Cooling Configurations For Low Emission Gas Turbine Combustors, Ryan Thomas Hebert Jan 2004

Innovative Cooling Configurations For Low Emission Gas Turbine Combustors, Ryan Thomas Hebert

LSU Master's Theses

Presently, effective cooling of modern low NOx combustor liners is achieved through combinations of innovative impingement configurations and other heat transfer enhancement methods. An inherent characteristic of conventional impingement configurations is the occurrence of downstream heat transfer degradation due to increased crossflow effects. In the present study, two different impingement configurations are studied. Both impingement configurations examined in this study aim to increase heat transfer effectiveness by reducing the detrimental effects of spent air crossflow. In Part I, a combination technique wherein impingement is combined with ribs placed in between impingement rows is studied. Three configurations with increased rib placements …