Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Engineering

Vibrating Flexoelectric Micro-Beams As Angular Rate Sensors, Yilin Qu, Feng Jin, Jiashi S. Yang Aug 2022

Vibrating Flexoelectric Micro-Beams As Angular Rate Sensors, Yilin Qu, Feng Jin, Jiashi S. Yang

Department of Mechanical and Materials Engineering: Faculty Publications

We studied flexoelectrically excited/detected bending vibrations in perpendicular directions of a micro-beam spinning about its axis. A set of one-dimensional equations was derived and used in a theoretical analysis. It is shown that the Coriolis effect associated with the spin produces an electrical output proportional to the angular rate of the spin when it is small. Thus, the beam can be used as a gyroscope for angular rate sensing. Compared to conventional piezoelectric beam gyroscopes, the flexoelectric beam proposed and analyzed has a simpler structure.


Vibrating Flexoelectric Micro-Beams As Angular Rate Sensors, Yilin Qu, Feng Jin, Jiashi S. Yang Aug 2022

Vibrating Flexoelectric Micro-Beams As Angular Rate Sensors, Yilin Qu, Feng Jin, Jiashi S. Yang

Department of Mechanical and Materials Engineering: Faculty Publications

We studied flexoelectrically excited/detected bending vibrations in perpendicular directions of a micro-beam spinning about its axis. A set of one-dimensional equations was derived and used in a theoretical analysis. It is shown that the Coriolis effect associated with the spin produces an electrical output proportional to the angular rate of the spin when it is small. Thus, the beam can be used as a gyroscope for angular rate sensing. Compared to conventional piezoelectric beam gyroscopes, the flexoelectric beam proposed and analyzed has a simpler structure.


Understanding The Nonlinear Dynamics Governing Vertical-Lift Vehicles With Variable-Speed, Fixed Rotors, Stephanie Vavra, Micah Busboom, Aleea Stanford, Keegan Moore Apr 2022

Understanding The Nonlinear Dynamics Governing Vertical-Lift Vehicles With Variable-Speed, Fixed Rotors, Stephanie Vavra, Micah Busboom, Aleea Stanford, Keegan Moore

UNL Student Research Days Posters, Undergraduate

Problem: Traffic significantly limits travel in urban areas. • The NASA Urban Air Mobility Project is developing an air taxi as an alternative mean of transportation (Fig. 1).

Challenge: Operating rotors at different frequencies may cause the cabin to vibrate at high amplitudes. Such effects are currently unknown.

Objective: Understand the effect of variable speed rotors on passenger comfort.

From the reduced-order modeling simulations, it can be assumed that counteracting the rotor speed in-balances can reduce the displacement and vibrations experienced at the center of the wing. In other words, should a rotor not maintain its optimal operation speed, reducing …


Estimating The Inner Ring Defect Size And Residual Service Life Of Freight Railcar Bearings Using Vibration Signatures, Jennifer Lima, Constantine Tarawneh, Jesse Aguilera, Jonas Cuanang Jul 2020

Estimating The Inner Ring Defect Size And Residual Service Life Of Freight Railcar Bearings Using Vibration Signatures, Jennifer Lima, Constantine Tarawneh, Jesse Aguilera, Jonas Cuanang

Mechanical Engineering Faculty Publications and Presentations

There are currently two primary wayside detection systems for monitoring the health of freight railcar bearings in the railroad industry: The Trackside Acoustic Detection System (TADS™) and the wayside Hot-Box Detector (HBD). TADS™ uses wayside microphones to detect and alert the train operator of high-risk defects. However, many defective bearings may never be detected by TADS™ since a high-risk defect is a spall which spans about 90% of a bearing’s raceway, and there are less than 30 systems in operation throughout the United States and Canada. HBDs sit on the side of the rail-tracks and use non-contact infrared sensors to …


Optimization Of Railroad Bearing Health Monitoring System For Wireless Utilization, Jonas Cuanang, Constantine Tarawneh, Martin Amaro Jr., Jennifer Lima, Heinrich D. Foltz Jul 2020

Optimization Of Railroad Bearing Health Monitoring System For Wireless Utilization, Jonas Cuanang, Constantine Tarawneh, Martin Amaro Jr., Jennifer Lima, Heinrich D. Foltz

Mechanical Engineering Faculty Publications and Presentations

In the railroad industry, systematic health inspections of freight railcar bearings are required. Bearings are subjected to high loads and run at high speeds, so over time the bearings may develop a defect that can potentially cause a derailment if left in service operation. Current bearing condition monitoring systems include Hot-Box Detectors (HBDs) and Trackside Acoustic Detection Systems (TADS™). The commonly used HBDs use non-contact infrared sensors to detect abnormal temperatures of bearings as they pass over the detector. Bearing temperatures that are about 94°C above ambient conditions will trigger an alarm indicating that the bearing must be removed from …


Trunk Velocity-Dependent Light Touch Reduces Postural Sway During Standing, Anirudh Saini, Devin Michael Burns, Darian Emmett, Yun Seong Song Nov 2019

Trunk Velocity-Dependent Light Touch Reduces Postural Sway During Standing, Anirudh Saini, Devin Michael Burns, Darian Emmett, Yun Seong Song

Psychological Science Faculty Research & Creative Works

Light Touch (LT) has been shown to reduce postural sway in a wide range of populations. While LT is believed to provide additional sensory information for balance modulation, the nature of this information and its specific effect on balance are yet unclear. In order to better understand LT and to potentially harness its advantages for a practical balance aid, we investigated the effect of LT as provided by a haptic robot. Postural sway during standing balance was reduced when the LT force (~ 1 N) applied to the high back area was dependent on the trunk velocity. Additional information on …


An Optical-Based Technique To Obtain Vibration Characteristics Of Rotating Tires, Aakash Mange, Theresa Atkinson, Jennifer Bastiaan, Javad Baqersad Aug 2019

An Optical-Based Technique To Obtain Vibration Characteristics Of Rotating Tires, Aakash Mange, Theresa Atkinson, Jennifer Bastiaan, Javad Baqersad

Mechanical Engineering Publications

The dynamic characteristics of tires are critical in the overall vibrations of vehicles because the tire-road interface is the only medium of energy transfer between the vehicle and the road surface. Obtaining the natural frequencies and mode shapes of the tire helps in improving the comfort of the passengers. The vibrational characteristics of structures are usually obtained by performing conventional impact hammer modal testing, in which the structure is excited with an impact hammer and the response of the structure under excitation is captured using accelerometers. However, this approach only provides the response of the structure at a few discrete …


Transverse Vibration Of Clamped-Pinned-Free Beam With Mass At Free End, Jonathan Hong, Jacob Dodson, Simon Laflamme, Austin Downey Aug 2019

Transverse Vibration Of Clamped-Pinned-Free Beam With Mass At Free End, Jonathan Hong, Jacob Dodson, Simon Laflamme, Austin Downey

Faculty Publications

Engineering systems undergoing extreme and harsh environments can often times experience rapid damaging effects. In order to minimize loss of economic investment and human lives, structural health monitoring (SHM) of these high-rate systems is being researched. An experimental testbed has been developed to validate SHM methods in a controllable and repeatable laboratory environment. This study applies the Euler-Bernoulli beam theory to this testbed to develop analytical solutions of the system. The transverse vibration of a clamped-pinned-free beam with a point mass at the free end is discussed in detail. Results are derived for varying pin locations and mass values. Eigenvalue …


Estimating The Outer Ring Defect Size And Remaining Service Life Of Freight Railcar Bearings Using Vibration Signatures, Joseph Montalvo, Constantine Tarawneh, Jennifer Lima, Jonas Cuanang, Nancy De Los Santos Jul 2019

Estimating The Outer Ring Defect Size And Remaining Service Life Of Freight Railcar Bearings Using Vibration Signatures, Joseph Montalvo, Constantine Tarawneh, Jennifer Lima, Jonas Cuanang, Nancy De Los Santos

Mechanical Engineering Faculty Publications and Presentations

The railroad industry currently utilizes two wayside detection systems to monitor the health of freight railcar bearings in service: The Trackside Acoustic Detection System (TADS™) and the wayside Hot-Box Detector (HBD). TADS™ uses wayside microphones to detect and alert the conductor of high-risk defects. Many defective bearings may never be detected by TADS™ since a high-risk defect is a spall which spans more than 90% of a bearing’s raceway, and there are less than 20 systems in operation throughout the United States and Canada. Much like the TADS™, the HBD is a device that sits on the side of the …


Vibration-Based Defect Detection For Freight Railcar Tapered-Roller Bearings, Joseph Montalvo, Constantine Tarawneh, Arturo A. Fuentes Jun 2018

Vibration-Based Defect Detection For Freight Railcar Tapered-Roller Bearings, Joseph Montalvo, Constantine Tarawneh, Arturo A. Fuentes

Mechanical Engineering Faculty Publications and Presentations

The railroad industry currently utilizes two wayside detection systems to monitor the health of freight railcar bearings in service: The Trackside Acoustic Detection System (TADS™) and the wayside Hot-Box Detector (HBD). TADS™ uses wayside microphones to detect and alert the conductor of high risk defects. Many defective bearings may never be detected by TADS™ due to the fact that a high risk defect is considered a spall which spans more than 90% of a bearing’s raceway, and there are less than 20 systems in operation throughout the United States and Canada. Much like the TADS™, the HBD is a device …


Vibration Monitoring Via Nano-Composite Piezoelectric Foam Bushings, David T. Fullwood, Evan T. Bird, A Jake Merrell, Brady K. Anderson, Cory N. Newton, Parker G. Rosquist, Anton E. Bowden, Matthew K. Seeley Oct 2016

Vibration Monitoring Via Nano-Composite Piezoelectric Foam Bushings, David T. Fullwood, Evan T. Bird, A Jake Merrell, Brady K. Anderson, Cory N. Newton, Parker G. Rosquist, Anton E. Bowden, Matthew K. Seeley

Faculty Publications

Most mechanical systems produce vibrations as an inherent side effect of operation. Though some vibrations are acceptable in operation, others can cause damage or signal a machine’s imminent failure. These vibrations would optimally be monitored in real-time, without human supervision to prevent failure and excessive wear in machinery. This paper explores a new alternative to currently-used machine-monitoring equipment, namely a piezoelectric foam sensor system. These sensors are made of a silicone-based foam embedded with nano- and micro-scale conductive particles. Upon impact, they emit an electric response that is directly correlated with impact energy, with no electrical power input. In the …


Nonlinear Vibration Energy Harvesting Based On Variable Double Well Potential Function, Wei Yang, Shahrzad Towfighian Jan 2016

Nonlinear Vibration Energy Harvesting Based On Variable Double Well Potential Function, Wei Yang, Shahrzad Towfighian

Mechanical Engineering Faculty Scholarship

Converting ambient mechanical energy to electricity, vibration energy harvesting, enables powering of the low-power remote sensors. Nonlinear energy harvesters have the advantage of a wider frequency spectrum compared to linear resonators making them more efficient in scavenging the broadband frequency of ambient vibrations. To increase the output power of the nonlinear resonators, we propose an energy harvester composed of a cantilever piezoelectric beam carrying a movable magnet facing a fixed magnet at a distance. The movable magnet on the beam is attached to a spring at the base of the beam. The spring-magnet system on the cantilever beam creates the …


The Dynamics Of Rotor With Rubbing, Jerzy T. Sawicki, Joe Padovan, Rabih Al-Khatib Jan 1999

The Dynamics Of Rotor With Rubbing, Jerzy T. Sawicki, Joe Padovan, Rabih Al-Khatib

Mechanical Engineering Faculty Publications

This paper presents the description of some phenomena associated with dynamic behavior of rotors interacting with stationary components. Numerical simulations show rotor vibration spectrum rich in subharmonic, quasi-periodic, and chaotic vibrations. The nonlinear calculation techniques are applied to demonstrate the changes of the vibration patterns for different operating conditions. Some conclusions are discussed with regard to unique characteristics of rub-induced rotor response, initial conditions, as well as appropriate ranges of system parameters. Of special interest are the changes in the apparent nonlinearity of the system dynamics as rubs are induced at different rotor speeds. In particular, starting with 2nd order …


Vibration Of Point-Supported Rectangular Composite Plates, Serge Abrate Jan 1995

Vibration Of Point-Supported Rectangular Composite Plates, Serge Abrate

Mechanical and Aerospace Engineering Faculty Research & Creative Works

A general approach is presented to study the free vibrations of rectangular symmetrically laminated composite plates with point supports by using the Rayleigh-Ritz method and the Lagrange multiplier technique for enforcing the zero displacement constraints at the support locations. Polynomial approximation functions are used, and the constitutive relationships are written in terms of four lamination parameters. With these lamination parameters, the number of design variables is reduced to a minimum, which is useful for design optimization purposes, while all symmetric lay-ups are considered. This paper illustrates how the lamination parameters can be used for optimal design of vibrating plates. Results …


Active Vibration Control Device, Keith E. Rouch, Sanjiv Tewani, Bruce L. Walcott, Ted R. Massa, Robert W. Stephenson, L. Scott Stephens Dec 1992

Active Vibration Control Device, Keith E. Rouch, Sanjiv Tewani, Bruce L. Walcott, Ted R. Massa, Robert W. Stephenson, L. Scott Stephens

Mechanical Engineering Faculty Patents

An active vibration control device for controlling vibration in a cantilevered member and a method for the same are disclosed. The device is comprised of a cantilevered member having a longitudinal axis comprising a sensor mounted near the free end of the member to measure motion of the member in a transverse direction and to produce a corresponding signal. A force generating assembly is mounted to the member near the free end to oppose the measured motion with a force thereby minimizing subsequent motion along the transverse axis caused by vibration.