Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Engineering

Slow Relaxation Dynamics In Binary Glasses During Stress-Controlled, Tension-Compression Cyclic Loading, Nikolai V. Priezjev Oct 2018

Slow Relaxation Dynamics In Binary Glasses During Stress-Controlled, Tension-Compression Cyclic Loading, Nikolai V. Priezjev

Mechanical and Materials Engineering Faculty Publications

The effect of cyclic loading on relaxation dynamics and mechanical properties of metallic glasses is studied using molecular dynamics simulations. We consider the Kob-Andersen three-dimensional binary mixture rapidly cooled across the glass transition and subjected to thousands of tension-compression cycles in the elastic range. It was found that during cyclic loading at constant pressure, the system is relocated to progressively lower levels of the potential energy, thus promoting greater densification and higher strength. Furthermore, with increasing stress amplitude, the average glass density increases and the minimum of the potential energy becomes deeper, while the elastic modulus is reduced. The typical …


The Yielding Transition In Periodically Sheared Binary Glasses At Finite Temperature, Nikolai V. Priezjev Jul 2018

The Yielding Transition In Periodically Sheared Binary Glasses At Finite Temperature, Nikolai V. Priezjev

Mechanical and Materials Engineering Faculty Publications

Non-equilibrium molecular dynamics simulations are performed to investigate the dynamic behavior of three-dimensional binary glasses prepared via an instantaneous quench across the glass transition. We found that with increasing strain amplitude up to a critical value, the potential energy approaches lower minima in steady state, whereas the amplitude of shear stress oscillations becomes larger. Below the yielding transition, the storage modulus dominates the mechanical response, and the gradual decay of the potential energy over consecutive cycles is accompanied by reduction in size of transient clusters of atoms with large nonaffine displacements. In contrast, above the yield strain, the loss modulus …


Vibration-Based Defect Detection For Freight Railcar Tapered-Roller Bearings, Joseph Montalvo, Constantine Tarawneh, Arturo A. Fuentes Jun 2018

Vibration-Based Defect Detection For Freight Railcar Tapered-Roller Bearings, Joseph Montalvo, Constantine Tarawneh, Arturo A. Fuentes

Mechanical Engineering Faculty Publications and Presentations

The railroad industry currently utilizes two wayside detection systems to monitor the health of freight railcar bearings in service: The Trackside Acoustic Detection System (TADS™) and the wayside Hot-Box Detector (HBD). TADS™ uses wayside microphones to detect and alert the conductor of high risk defects. Many defective bearings may never be detected by TADS™ due to the fact that a high risk defect is considered a spall which spans more than 90% of a bearing’s raceway, and there are less than 20 systems in operation throughout the United States and Canada. Much like the TADS™, the HBD is a device …


An Analysis Of The Efficacy Of Wayside Hot-Box Detector Data, Constantine Tarawneh, James Aranda, Veronica Hernandez, Claudia J. Ramirez Jun 2018

An Analysis Of The Efficacy Of Wayside Hot-Box Detector Data, Constantine Tarawneh, James Aranda, Veronica Hernandez, Claudia J. Ramirez

Mechanical Engineering Faculty Publications and Presentations

Wayside hot-box detectors (HBDs) are devices that are currently used to monitor bearing, axle, and brake temperatures as a way of assessing railcar component health and to indicate any possible overheating or abnormal operating conditions. Conventional hot-box detectors are set to alarm whenever a bearing is operating at a temperature that is 94.4°C (170°F) above ambient, or when there is a 52.8°C (95°F) temperature difference between two bearings that share an axle. These detectors are placed adjacent to the railway and utilize an infrared sensor in order to obtain temperature measurements. Bearings that trigger HBDs or display temperature trending behavior …


Impact Of Hysteresis Heating Of Railroad Bearing Thermoplastic Elastomer Suspension Pad On Railroad Bearing Thermal Management, Oscar O. Rodriguez, Arturo A. Fuentes, Constantine Tarawneh Jun 2018

Impact Of Hysteresis Heating Of Railroad Bearing Thermoplastic Elastomer Suspension Pad On Railroad Bearing Thermal Management, Oscar O. Rodriguez, Arturo A. Fuentes, Constantine Tarawneh

Mechanical Engineering Faculty Publications and Presentations

It is a known fact that polymers and all other materials develop hysteresis heating due to the viscoelastic response or internal friction. The hysteresis or phase lag occurs when cyclic loading is applied leading to the dissipation of mechanical energy. The hysteresis heating is induced by the internal heat generation of the material, which occurs at the molecular level as it is being disturbed cyclically. Understanding the hysteresis heating of the railroad bearing elastomer suspension element during operation is essential to predict its dynamic response and structural integrity, as well as to predict the thermal behavior of the railroad bearing …


Behavior Of Eb Frp Masonry Bond Under Service Temperature, Zuhair Al-Aljaberi, John J. Myers, K. Chandrashekhara Jan 2018

Behavior Of Eb Frp Masonry Bond Under Service Temperature, Zuhair Al-Aljaberi, John J. Myers, K. Chandrashekhara

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

The interest in advanced composites in repairing and strengthening infrastructure systems has considerably increased, especially as the application externally bonded (EB) fiber reinforced polymer (FRP) has become more well established. Previous research on bond behavior has focused on impact of durability by considering exposure to harsh environmental conditions and testing the specimens after exposure, rather than testing bond performance during exposure. The influence of directly applying temperature on bond behavior represents an open topic that needs to be investigated in more detail. This study is one of the first studies to investigate the bond behavior when the composite is subjected …