Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Measurement Of Adhesion Energy Of Electrospun Polymer Membranes Using A Shaft-Loaded Blister Test, Shing Chung Josh Wong, Haining Na, Pei Chen Jun 2013

Measurement Of Adhesion Energy Of Electrospun Polymer Membranes Using A Shaft-Loaded Blister Test, Shing Chung Josh Wong, Haining Na, Pei Chen

Mechanical Engineering Faculty Research

This study aims to examine the adhesion work of electrospun polymer nano- and micro-fibers. The adhesion energy at the interface of electrospun membrane and a rigid substrate is characterized by a shaft-loaded blister test (SLBT). By controlling the processing parameters, polyvinylidene fluoride (PVDF) fibrous membranes are prepared with fiber diameters ranging from 201 ± 86 nm to 2,724 ± 587 nm. The adhesion energy between electrospun membrane and rigid substrate increases from 8.1 ± 0.7 mJ/m2 to 258.8 ± 43.5 mJ/m2 by use of smaller fiber diameters. Adhesion energies between electrospun PVDF membranes and SiC substrates made of different grain …


Experimental Study Of Nanofiber Production Through Forcespinning, Simon Padron, Arturo Fuentes, Dumitru Caruntu, Karen Lozano Jan 2013

Experimental Study Of Nanofiber Production Through Forcespinning, Simon Padron, Arturo Fuentes, Dumitru Caruntu, Karen Lozano

Mechanical Engineering Faculty Publications and Presentations

A newly developed method of producing nanofibers, called forcespinning, has proven to be a viable alternative to mass produce nanofibers. Unlike electrospinning, the most common method currently being employed (which draws fibers through the use of electrostatic force), forcespinning utilizes centrifugal forces which allow for a host of new materials to be processed into nanofibers (given that electric fields are not required) while also providing a significant increase in yield and ease of production. This work presents a detailed explanation of the fiber formation process. The study is conducted using high speed photography to capture the jet initiation process at …