Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 17 of 17

Full-Text Articles in Engineering

Probabilistic Machine Learning For Battery State Of Health Prognostics, Charli Zaretsky May 2023

Probabilistic Machine Learning For Battery State Of Health Prognostics, Charli Zaretsky

Honors Scholar Theses

The ability to understand and predict the state of health (SOH) of lithium-ion batteries is an integral component of their widespread commercial use. There are various methods through which SOH can be analyzed and predicted, and this paper discusses these different methods, and the strengths and weaknesses of each. This paper also details an analysis of lithium-ion battery SOH through two data-driven machine learning methods: XGBoost and Gaussian process regression. A comparison is made between each method’s accuracy in predicting next-cycle discharge capacity using electrochemical impedance spectroscopy (EIS) readings and battery charge and discharge rates, from a dataset given in …


Effects Of Tempering Temperature On Gas Turbine Fan Cases, Seth Utter Apr 2023

Effects Of Tempering Temperature On Gas Turbine Fan Cases, Seth Utter

Honors Scholar Theses

The project aimed to investigate the effects of tempering temperature on metals used for gas turbine engine fan cases as a major relevant concern is containing blades in during blade-out events. There are three ways to accomplish this: using a thicker metal, incorporating different materials into the case, or heat treating the metal. This project focused on the third solution: reviewing the impact toughness and hardness of fractured samples and their equivalent ductile-to-brittle transition shear faces. Given its availability, 1045 steel, as opposed to aerospace grade metals, was used for in-house testing. The data obtained from these experiments were then …


Cloudbots: Autonomous Atmospheric Explorers, Akash Binoj May 2022

Cloudbots: Autonomous Atmospheric Explorers, Akash Binoj

Honors Scholar Theses

The CloudBot is an autonomous weather balloon that operates on the principle of variable buoyancy to ascend and descend in the atmosphere. This project aims to develop a device that will collect atmospheric measurements and communicate them mid-flight. The apparatus consists of a helium-filled balloon, the robotic payload, and an air cell. The fixed-volume helium balloon at the top provides an upwards buoyancy force, while the air cell at the bottom can hold a variable amount of pressure to adjust the weight of the CloudBot. By doing so, it is able to travel in storm conditions and collect valuable atmospheric …


Triggering Thermal Runaway In Lithium-Ion Batteries, Chris John May 2022

Triggering Thermal Runaway In Lithium-Ion Batteries, Chris John

Honors Scholar Theses

The proliferation of lithium-ion batteries enables electric devices such as cell phones to electric vehicles to become a reality. A latent danger, however, exists in these batteries. Mechanical, thermal, or electrical damage can initiate a phenomenon known as thermal runaway (TR). This damage causes internal short circuits within the battery, releasing heat and triggering exothermic decomposition reactions. The battery will catch fire if rapid cooling is not present. While experimental designs exist for evaluating TR, significant safety hazards and impracticality may impede testing efforts. Finite element analysis, therefore, becomes a vital tool in modeling TR and mitigation techniques. However, there …


Assessing The Feasibility Of A Belt Based Continuously Varied Transmission For Bicycles, Ethan Wicko Oct 2021

Assessing The Feasibility Of A Belt Based Continuously Varied Transmission For Bicycles, Ethan Wicko

Holster Scholar Projects

The objective of this project is to establish the feasibility of a new drivetrain that decreases maintenance and decreases rider effort compared to current widely used derailleur-based drivetrains by utilizing a belt based continuously varied transmission. With further development, this technology will make cycling more accessible by reducing the mechanical knowledge required to maintain a functional bike and facilitate bicycle riding by increasing durability and providing infinite gear ratios within that range, potentially increasing the health and quality of life for many.


Potential Improvements For Underwater Sound Speed Measurement Devices, Matthieu Bernier May 2021

Potential Improvements For Underwater Sound Speed Measurement Devices, Matthieu Bernier

Honors Scholar Theses

Modern sonar systems rely on fast and accurate measurements of the speed of sound in water. Plenty of measurement devices currently exist which are used to gather sound speed measurements in water. They specifically require accurate temperature measurements, as temperature is the most influential factor which affects sound wave speed. Previous research on sound speed properties, a few different examples of sound speed measurement devices, and examples of different types of temperature measurement devices was used along with new research on salinity equations and properties of sound, ocean water, and various existing measurement devices to suggest possible improvements for sound …


Design Of Versatile Feedback Control System Components For Selective Laser Sintering, Thomas Chessman May 2020

Design Of Versatile Feedback Control System Components For Selective Laser Sintering, Thomas Chessman

University Scholar Projects

Selective laser sintering (SLS) is an additive manufacturing technique that involves using a laser to fuse powdered material together, layer by layer, in order to create a 3-D product. Despite its numerous benefits over traditional methods of manufacturing, including higher efficiency, versatility, and the ability to process many materials, selective laser sintering suffers from its propensity to generate structural errors during operation.

Feedback control has been shown to improve fabrication quality in other laser-based additive manufacturing techniques when implemented properly. Widespread exploration of applying feedback control in SLS might lead to significant performance improvements in this form of manufacturing.

This …


Investigation Of Particle Interference In Induced Electromagnetic Coil, Elizabeth Soha May 2020

Investigation Of Particle Interference In Induced Electromagnetic Coil, Elizabeth Soha

Honors Scholar Theses

The purpose of this thesis work is to study the effect of a ferromagnetic particle on an induced solenoid’s magnetic field. Solenoids are wound coils that are charged with current to induce a magnetic field. The placement of a particle inside a solenoid interacts with the coil’s magnetic field and therefore changes the coil’s field behavior. This work comprises a parametric study of how particle size and placement within a solenoid affect the solenoid’s magnetic field. A model of the coil and particle is created and parametrically studied using the computational software ANSYS. The results from this simulation help to …


Automating 35mm Photographic Film Digitization: X-Y Table Capture System Design And Assessment, Michael J. Bennett May 2020

Automating 35mm Photographic Film Digitization: X-Y Table Capture System Design And Assessment, Michael J. Bennett

Published Works

35mm still image formats are some of the most abundant photographic film types in cultural heritage collections. However, their special handling needs coupled with high resolution digital capture requirements have traditionally posed logistical constraints with regard to the formats’ digitization at scale. Through the use of a programmable X-Y table camera capture system, both slide and strip 35mm photographic film can be digitized in an automated fashion following Federal Agencies Digitization Guidelines (FADGI).


Thermodynamic Potential Of Very High Performance Fuel Cells, Kimberly Liang May 2020

Thermodynamic Potential Of Very High Performance Fuel Cells, Kimberly Liang

Honors Scholar Theses

Fuel Cells are devices that use the chemical energy of a fuel (e.g. hydrogen) to electrochemically produce electricity. Similar to a conventual combustion engine, a fuel cell will continue to run and generate electricity as long as fuel is supplied. However, unlike a conventional combustion engine, fuel cells have a much higher theoretical efficiency and do not directly emit harmful air pollutants. This project will focus on a fuel cell that uses hydrogen as fuel and oxygen as an oxidizing agent.

As fuel cell technology evolved, high pressure fuel cell systems became of interest in portable applications, such as submarine …


An Assessment Of Renewable Energy Technology Implementation In Storrs, Connecticut: Emissions Reduction And Feasibility Of A Microgrid System At Uconn, Sophie Macdonald May 2020

An Assessment Of Renewable Energy Technology Implementation In Storrs, Connecticut: Emissions Reduction And Feasibility Of A Microgrid System At Uconn, Sophie Macdonald

Honors Scholar Theses

The purpose of this project is to design a clean energy-sourced microgrid for UConn’s main campus that would reduce the university’s energy emissions while remaining within the geographic boundaries of viable UConn-owned land. Economic cost was not considered in this analysis; instead, emissions and space constraints were the optimized measures of value and feasibility. Sources of energy that were considered include photovoltaics (PV), wind turbines, hydrokinetic systems, and fuel cells. Energy storage capacity was included in the analysis as well. The overall system was optimized first by ignoring space constraints and for a minimum of 10% reduction from the current …


Computational Analysis Of A New Planar Mixing Layer Flame Configuration To Study Soot Inception, Carmen Ciardiello May 2020

Computational Analysis Of A New Planar Mixing Layer Flame Configuration To Study Soot Inception, Carmen Ciardiello

Honors Scholar Theses

The production of soot is omnipresent in society today. Soot is the product of many of the combustion processes that provide the bulk of the usable energy throughout the world. Furthermore, soot particulate poses a great danger to both the environment and all forms of life on Earth. It has proven to pollute ecosystems, foster health problems for human beings, and degrade air quality [1].

These dangers make studying and understanding soot particulate paramount for improving the quality of life. Thus, this study introduces a new flame configuration for studying soot inception. Presently, various common flame configurations have been found …


Development Of A Sonically Powered Biodegradable Nanogenerator For Bone Regeneration, Avi S. Patel May 2019

Development Of A Sonically Powered Biodegradable Nanogenerator For Bone Regeneration, Avi S. Patel

University Scholar Projects

Background: Reconstruction of bone fractures and defects remains a big challenge in orthopedic surgery. While regenerative engineering has advanced the field greatly using a combination of biomaterial scaffolds and stem cells, one matter of difficulty is inducing osteogenesis in these cells. Recent works have shown electricity’s ability to promote osteogenesis in stem cell lines when seeded in bone scaffolds; however, typical electrical stimulators are either (a) externally housed and require overcomplex percutaneous wires be connected to the implanted scaffold or (b) implanted non-degradable devices which contain toxic batteries and require invasive removal surgeries.

Objective: Here, we establish a biodegradable, piezoelectric …


Development Of A Sonically Powered Biodegradable Nanogenerator For Bone Regeneration, Avi Patel May 2019

Development Of A Sonically Powered Biodegradable Nanogenerator For Bone Regeneration, Avi Patel

Honors Scholar Theses

Background: Reconstruction of bone fractures and defects remains a big challenge in orthopedic surgery. While regenerative engineering has advanced the field greatly using a combination of biomaterial scaffolds and stem cells, one matter of difficulty is inducing osteogenesis in these cells. Recent works have shown electricity’s ability to promote osteogenesis in stem cell lines when seeded in bone scaffolds; however, typical electrical stimulators are either (a) externally housed and require overcomplex percutaneous wires be connected to the implanted scaffold or (b) implanted non-degradable devices which contain toxic batteries and require invasive removal surgeries.

Objective: Here, we establish a biodegradable, piezoelectric …


The Intersection Of Manufacturing Technologies And School Music Programs, Leslie Prunier May 2017

The Intersection Of Manufacturing Technologies And School Music Programs, Leslie Prunier

University Scholar Projects

The objective of this project is to design and manufacture a musical instrument, a marching baritone horn, out of plastic. It is constructed out of both PVC pipe and 3D-printed components. Utilizing this project’s documentation, a high school student could use a 3D printer and other basic tools to make their own musical instrument for a fraction of the cost of purchasing one. This documentation will produce a horn tuned in the key of B flat with one functioning valve, and suggestions for future work to make the other two valves functional as well.


Kinematics Of The Lower Extremities During Fundamental Martial Arts Tricking Techniques, Kevin P. Grassie Apr 2017

Kinematics Of The Lower Extremities During Fundamental Martial Arts Tricking Techniques, Kevin P. Grassie

Honors Scholar Theses

Martial Arts Tricking (MAT) is a relatively new sport that combines martial arts, gymnastics, acrobatics, and breakdancing for the purposes of creating aesthetic and impressive combinations of kicks, flips and twists. It has been growing exponentially through social media and the overall athletic and entertainment communities. The sport is very unique in that the movements, with their blended influences, provide novel ways for athletes to generate and utilize their momentum in a creative way. The results often include off-axis flips and twists, single-leg landings, and complicated yet fluid techniques that easily chain together.

Due to the sport only being a …


So, You Want An X-Y Table?, Michael J. Bennett Jul 2016

So, You Want An X-Y Table?, Michael J. Bennett

UConn Library Presentations

Presentation on the University of Connecticut Libraries' automated X-Y table for digital capture of oversized archival maps, plans, art, illustrations, etc. Custom table designed by Michael Ulsaker (Ulsaker Studio, Glastonbury, CT), and Michael J. Bennett (University of Connecticut Library Digital Production Studio). System integration and assembly by Michael Ulsaker. Automation engineering by WEI Inc., Old Saybrook, CT using Yamaha Robotics and Allen Bradley PLC.