Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering

University of Tennessee, Knoxville

Theses/Dissertations

Force

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Sensor Comparison For Low-Cost Dynamic Force Measurement In Milling, Zachary Mason May 2022

Sensor Comparison For Low-Cost Dynamic Force Measurement In Milling, Zachary Mason

Masters Theses

Machine cutting forces are commonly measured using piezoelectric dynamometers. Such dynamometers can be prohibitively expensive and may still require extensive post processing. Previous work used a low-cost single degree of freedom constrained motion dynamometer (CMD) in conjunction with a knife edge sensor to determine the cutting forces through inverse force filtering. In that approach, the measured displacement of the CMD was transformed into the frequency domain by the fast Fourier transform (FFT) and convolved with the inverted receptance frequency response function (FRF) to yield force in the frequency domain. The force was then converted to the time domain using the …


Digital Cutting Force Modeling For Milling Operations, Timothy T. No Aug 2021

Digital Cutting Force Modeling For Milling Operations, Timothy T. No

Doctoral Dissertations

Process improvement in milling through improved understanding of machining dynamics is an on-going research endeavor. The objective of this project is to advance digital modeling of the milling process by incorporating tool-specific geometry in the machining analysis. Structured light scanning will be used to perform tool geometry measurements and produce a 3D model. The 3D model data will include the spatial location of the cutting edges, as well as the rake and relief profiles from the tool cross section. The rake and relief profiles will be imported, together with the work material flow stress model, into a finite element analysis …


Displacement-Based Dynamometer For Milling Force Measurement, Michael F. Gomez May 2021

Displacement-Based Dynamometer For Milling Force Measurement, Michael F. Gomez

Doctoral Dissertations

This project will study the design and testing of a low-cost dynamometer for milling dynamic force measurement. The monolithic design is based on constrained-motion/flexure-based kinematics, where force is inferred from displacement measured using a low-cost optical interrupter (i.e., a knife edge that partially interrupts the light beam in an emitter-detector pair). The time-dependent displacement of the dynamometer’s moving platform caused by the milling force is converted to the frequency domain, multiplied by the inverse of the dynamometer’s ideally single degree of freedom (SDOF) frequency response function (FRF), and converted back into the time-domain to obtain the time-dependent cutting force. The …