Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering

Selected Works

Selected Works

2015

Temperature

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Electrowetting Of Room Temperature Ionic Liquids (Rtils) For Capillary Force Manipulation, Abhay Vasudev, Ashish Jagtiani, Li Du, Jun Hu, Yanan Gao, Jiang Zhe Apr 2015

Electrowetting Of Room Temperature Ionic Liquids (Rtils) For Capillary Force Manipulation, Abhay Vasudev, Ashish Jagtiani, Li Du, Jun Hu, Yanan Gao, Jiang Zhe

Dr. Jiang Zhe

The feasibility of using room temperature ionic liquids (RTILs) as the electrowetting liquid for capillary force microgrippers was studied. The non-volatility and thermal stability of ionic liquids make them suitable for droplet based microgripping application in high temperature and vacuum environments. Electrowetting on co-planar electrodes was utilized to dynamically change the contact angle of a 1-butyl-3-methylimidazolium hexafluorophosphate (BmimPF6 ) liquid bridge to control the capillary lifting forces. The lifting force generated by the liquid bridge was experimentally characterized. The maximum capillary force was 146μN. The dynamic response of the BmimPF6 liquid bridge was also characterized.


Numerical Investigation Of Temperature Field During Sintering Of Bioceramic Nanoparticles By Pulse Lasers, Chang Ye, Gary Cheng Apr 2015

Numerical Investigation Of Temperature Field During Sintering Of Bioceramic Nanoparticles By Pulse Lasers, Chang Ye, Gary Cheng

Dr. Chang Ye

Traditional numerical study of the temperature field of laser thermal processing is based on two assumptions: 1. heat source is a surface heat flux, and 2. uniform material properties. This method is not accurate when it comes to the laser sintering of nanoparticle integrated bioceramics coating with certain porosity. In this paper, Heat transfer (HT) model and electromagnetic (EM) model is coupled to investigate the temperature field of bioceramics nanoparticles. The heat source calculated from EM field is simultaneously input into the HT model to calculate the temperature field of the nanoparticle assembly. The interaction between the nanoparticles in the …