Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering

Portland State University

Additive manufacturing

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Pcl And Dmso2 Composites For Bio-Scaffold Materials, Jae-Won Jang, Kyung-Eun Min, Cheolhee Kim, Chien Wern, Sung Yi Mar 2023

Pcl And Dmso2 Composites For Bio-Scaffold Materials, Jae-Won Jang, Kyung-Eun Min, Cheolhee Kim, Chien Wern, Sung Yi

Mechanical and Materials Engineering Faculty Publications and Presentations

Polycaprolactone (PCL) has been one of the most popular biomaterials in tissue engineering due to its relatively low melting temperature, excellent thermal stability, and cost-effectiveness. However, its low cell attraction, low elastic modulus, and long-term degradation time have limited its application in a wide range of scaffold studies. Dimethyl sulfone (DMSO2) is a stable and non-hazardous organosulfur compound with low viscosity and high surface tension. PCL and DMSO2 composites may overcome the limitations of PCL as a biomaterial and tailor the properties of biocomposites. In this study, PCL and DMSO2 composites were investigated as a new bio-scaffold material to increase …


Optimization Of 3d Printed Mold Performance For Injection Molding Via Hollow Infill Patterns, Alan Fong Jul 2021

Optimization Of 3d Printed Mold Performance For Injection Molding Via Hollow Infill Patterns, Alan Fong

University Honors Theses

The applicability of hollow infill patterns has been explored for its applications in making 3D printed polymer-based injection molds in the additive manufacturing industry. Hollow infill patterns offer a significant reduction in material costs as well as the opportunity for reducing the cooling times via pumping a coolant fluid through the hollow cavity in a similar fashion to traditional conformal cooling channels. A 3D Jacks Support Hollow mold model was determined to be the best performing design. FEA analysis was conducted to determine the maximum reduction in internal volume (percentage of material saved) that could be achieved without exceeding the …