Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Field Emission Studies Toward Improving The Performance Of Dc High Voltage Photoelectron Guns, Mahzad Bastaninejad Jul 2013

Field Emission Studies Toward Improving The Performance Of Dc High Voltage Photoelectron Guns, Mahzad Bastaninejad

Mechanical & Aerospace Engineering Theses & Dissertations

Field emission is the main mechanism that prevents DC high voltage photoemission electron guns from operating at the very high bias voltages required to produce low emittance beams. Gas conditioning is shown to eliminate field emission from cathode electrodes used inside DC high voltage photoelectron guns. Measurements and simulation results indicate that gas conditioning eliminates field emission from cathode electrodes via two mechanisms: sputtering and implantation, with the benefits of implantation reversed by heating the electrode. The field emission characteristics of 5 stainless steel electrodes varied significantly upon the initial application of voltage but improved to nearly the same level …


Subtalar Joint Instability: Diagnosis And Conservative Treatment, Julie Choisne Jul 2013

Subtalar Joint Instability: Diagnosis And Conservative Treatment, Julie Choisne

Mechanical & Aerospace Engineering Theses & Dissertations

Subtalar instability may be caused by various ligamentous injuries. Combined instability at the ankle and subtalar joint is not adequately diagnosed. Further, isolated subtalar instability is usually misdiagnosed which may lead to long term damage to the joint. Developing a non-invasive and clinically practical tool to diagnose subtalar joint instability would be an important asset. The ability of an ankle brace, a common treatment for hindfoot instability, to promote stability for the subtalar joint was not well established. The purposes of this study were to 1) assess the kinematics of the subtalar, ankle, and hindfoot in the presence of isolated …


Computational Dynamics For The Flexible Multi-Body System, Yu Liu Apr 2013

Computational Dynamics For The Flexible Multi-Body System, Yu Liu

Mechanical & Aerospace Engineering Theses & Dissertations

Research in computational dynamics has tremendously developed in the recent years because of the demand for analysis and simulation of various multi-body systems in the growing bio-medical, mechanical and aerospace industries. These multi-body systems are made of individual bodies that are interconnected via mechanical joints. Mathematically, these joints that connect the bodies can be described as constraint equations imposed upon the motions of the involved free bodies. This process will result in an equation of motion expressed in the form of a differential-algebraic equation (DAE). This is one of the main difficulties when dealing with the multi-body system because these …


A Polymer-Based Microfluidic Device With Electrolyte-Enabled Distributed Transducers (Eedt) For Distributed Load Detection, Peng Cheng Jan 2013

A Polymer-Based Microfluidic Device With Electrolyte-Enabled Distributed Transducers (Eedt) For Distributed Load Detection, Peng Cheng

Mechanical & Aerospace Engineering Theses & Dissertations

The capability of detecting distributed static and dynamic loads is indispensable in a wide variety of applications, such as examining anatomical structures of biological tissues in tissue health analysis and minimally invasive surgery (MIS) and determining the texture of an object in robotics. This dissertation presents a comprehensive study of a polymer-based microfluidic device with electrolyte-enabled distributed transducers and demonstrates a new concept on using a single microfluidic device for distributed-load detection, which takes advantage of the low-cost microfluidic fabrication technology and the low modulus and biocompatibility of polymer. The core of the device is a single deformable polymer microstructure …