Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 16 of 16

Full-Text Articles in Engineering

Quantitative Phase-Field Modeling Of Crack Propagation In Multi-Phase Materials, Arezoo Emdadi Jan 2018

Quantitative Phase-Field Modeling Of Crack Propagation In Multi-Phase Materials, Arezoo Emdadi

Doctoral Dissertations

”Research presented in this dissertation is focused on developing and validating a computational framework for study of crack propagation in polycrystalline composite ceramics capable of designing micro-architectures of phases to improve fracture toughness and damage tolerance of ZrB2-based ultra-high temperature ceramics (UHTCs). A quantitative phase-field model based on the regularized formulation of Griffith’s theory is presented for crack propagation in homogenous and heterogeneous brittle materials. This model utilizes correction parameters in the total free energy functional and mechanical equilibrium equation within the crack diffusive area to ensure that the maximum stress in front of the crack tip is …


Development And Management Of Advanced Batteries Via Additive Manufacturing And Modeling, Jie Li Jan 2018

Development And Management Of Advanced Batteries Via Additive Manufacturing And Modeling, Jie Li

Doctoral Dissertations

"The applications of Li-ion batteries require higher energy and power densities, improved safety, and sophisticated battery management systems. To satisfy these demands, as battery performances depend on the network of constituent materials, it is necessary to optimize the electrode structure. Simultaneously, the states of the battery have to be accurately estimated and controlled to maintain a durable condition of the battery system. For those purposes, this research focused on the innovation of 3D electrode via additive manufacturing, and the development of fast and accurate physical based models to predict the battery status for control purposes. Paper I proposed a novel …


Direct Printing Of Single-Crystal Silicon By Microscale Nanoparticle Printing And Confined Laser Melting And Crystallization, Wan Shou Jan 2018

Direct Printing Of Single-Crystal Silicon By Microscale Nanoparticle Printing And Confined Laser Melting And Crystallization, Wan Shou

Doctoral Dissertations

"The transport and interfacial phenomena in laser melting and crystallization of silicon in micro-/nano-scale confinement lacks sufficient understanding. Uncovering the underlying mechanisms, and hence harness the melting and crystallization processes can help the formation of controllable single-crystal structures or patterns. In this dissertation, a molecular dynamics (MD) simulation was conducted to calculate the interfacial free energy of the silicon system in contact with flat and structured walls. Then the calculated interfacial energies were employed to predict the nucleation mechanisms in a slab of liquid silicon confined by two walls and compared with MD simulation results. Further, in combination with a …


Soy-Based Polyurethane Foam For Insulation And Structural Applications, Gurjot S. Dhaliwal Jan 2018

Soy-Based Polyurethane Foam For Insulation And Structural Applications, Gurjot S. Dhaliwal

Doctoral Dissertations

"Polyurethane (PU) foams are widely used as insulation materials due to their high insulation properties and low cost compared to conventional materials such as styrene and mineral wool. PU foams are traditionally fabricated with petroleum-based precursors. However, high crude price and higher carbon footprint has lead interest of researchers to synthesis PU foams using plant-based raw materials, that are inexpensive and renewable. In this dissertation, PU foams were fabricated using soy-based polyol and its thermal and mechanical properties were investigated. In the first part, of PU foam samples with different formulations were fabricated using soy-based polyol HB230, and varying amounts …


Modeling And Experimental Investigations On Particle Dynamic Behaviors In Laser 3d Printing With Blown Powder, Wei Li Jan 2018

Modeling And Experimental Investigations On Particle Dynamic Behaviors In Laser 3d Printing With Blown Powder, Wei Li

Doctoral Dissertations

"Pre-mixed powder is frequently-used powder supply to fabricate Functional Gradient Material (FGM) by Laser 3D printing, which is also called Laser Metal Deposition (LMD). The deposited FGM composition is expected to be similar or same as supplied powder mixture. However, because pre-mixed powder has different particle densities and particle sizes, the caused particle acceleration differences can result in the separation in powder mixture. Up to now, there was no study focused on pre-mixed powders' flow behavior in LMD. The current research aims to investigate the flow behaviors of pre-mixed powder supplied for LMD through both experimental and modeling approaches. In …


Design For Optical Metamaterial Design For Optical Metamaterial Absorber, Huixu Deng Jan 2018

Design For Optical Metamaterial Design For Optical Metamaterial Absorber, Huixu Deng

Doctoral Dissertations

“Optical metamaterlal (MM) absorbers in the visible or near-infrared range have been widely investigated in these years since they are crucial in many promising applications, such as solar energy harvesting systems, thermo-photovoltaic energy conversion devices, thermal imaging and emissivity control. This dissertation aims to design and investigate various optical metamaterial absorbers based on different mechanisms and theories, such as cavity resonance, impedance match, equivalent circuit model and waveguide stop light mode. First, via utilizing the cavity resonance, a tunable narrowband MM absorber/emitter for thermophotovoltaic (TPV) is designed and analyzed based on gold nanowire cavities to improve the overall efficiency of …


High Temperature Polymer Composites Using Out-Of-Autoclave Processing, Sudharshan Anandan Jan 2018

High Temperature Polymer Composites Using Out-Of-Autoclave Processing, Sudharshan Anandan

Doctoral Dissertations

"High performance polymer composites possess high strength-to-weight ratio, corrosion resistance, and have design flexibility. Carbon/epoxy composites are commonly used aerospace materials. Bismaleimide based composites are used as a replacement for epoxy systems at higher service temperatures. Aerospace composites are usually manufactured, under high pressure, in an autoclave which requires high capital investments and operating costs. In contrast, out-of-autoclave manufacturing, specifically vacuum-bag-only prepreg process, is capable of producing low cost and high performance composites. In the current study, out-of-autoclave processing of high temperature carbon/bismaleimide composites was evaluated. The cure and process parameters were optimized. The properties of out-of-autoclave cured laminates compared …


Modeling And Simulation Of Viscoplasticity, Recrystallization, And Softening Of Alloyed Steel During Hot Rolling Process, Xin Wang Jan 2018

Modeling And Simulation Of Viscoplasticity, Recrystallization, And Softening Of Alloyed Steel During Hot Rolling Process, Xin Wang

Doctoral Dissertations

"Hot rolling is one of the most important and complex deformation processes in steel manufacturing and is essential to final product quality. The objective of this study is to investigate viscoplasticity, dynamic recrystallization, and static softening of alloyed metal during hot rolling process. Gleeble hot compression tests were performed to provide experimental stress-strain curves at different temperatures and strain rates. An inverse finite element analysis was performed to calibrate the experimental curves. Viscoplastic models including a Johnson-Cook (JC) model, a Zerilli-Armstrong (ZA) model, and a combined JC and ZA model were developed. Dynamic recrystallization behavior was investigated and modeled based …


Fabrication And Characterization Of Advanced Materials Using Laser Metal Deposition From Elemental Powder Mixture, Xueyang Chen Jan 2018

Fabrication And Characterization Of Advanced Materials Using Laser Metal Deposition From Elemental Powder Mixture, Xueyang Chen

Doctoral Dissertations

"Over the past decades of years, a great deal of money has been spent to machine large and complex parts from high-performance metals (i.e., titanium components for aerospace applications), so users attempt to circumvent the high cost of materials. Laser metal deposition (LMD) is an additive manufacturing technique capable of fabricating complicated structures with superior properties. This dissertation aims to improve the applications of LMD technique for manufacturing metallic components by using various elemental powder mixture according to the following three categories of research topics. The first research topic is to investigate and develop a cost-effective possibility by using elemental …


Laser Foil Printing And Surface Polishing Processes, Chen Chen Jan 2018

Laser Foil Printing And Surface Polishing Processes, Chen Chen

Doctoral Dissertations

"A foil-based additive manufacturing technology for fabricating metal parts, called Laser Foil Printing (LFP), was proposed and developed in this dissertation. The manufacturing sub-processes comprising the LFP technology were comprehensively studied, which include the laser spot welding of foil, laser raster-scan welding of foil, laser cutting of foil, and laser polishing processes. The fabricated free-form parts were demonstrated and own better mechanical properties (micro hardness and tensile strength) than the raw material, because of the rapid-cooling process of laser welding. The full and strong bond between layers was formed by the laser welding process, with no micro-cracks or pores observed. …


Research On Additive Manufacturing Of Metallic Glass Alloy, Yiyu Shen Jan 2018

Research On Additive Manufacturing Of Metallic Glass Alloy, Yiyu Shen

Doctoral Dissertations

"The required rapid cooling has limited the dimension of the Bulk Metallic glasses (BMGs) produced by traditional method, and hence has seriously limited their applications, despite their remarkable mechanical properties. In this present project, a detailed study is conducted on the methodology and understanding of manufacturing large Zr- based metallic glass part by laser based additive manufacturing technology, which breaks the size limitation. The first research issue proposes and develops a new additive manufacturing technology, named Laser-Foil-Printing (LFP). Sheet foils of LM105 (Zr52.5Ti5Al10Ni14.6Cu17.9 (at. %)) metallic glass are used as feed …


Investigation Of Microstructure And Mechanical Properties By Direct Metal Deposition, Jingwei Zhang Jan 2018

Investigation Of Microstructure And Mechanical Properties By Direct Metal Deposition, Jingwei Zhang

Doctoral Dissertations

"Microstructure and properties of Direct Metal Deposition (DMD) parts are very crucial to meeting industrial requirements of parts quality. Prediction, and control of microstructure and mechanical properties have attracted much attention during conventional metal manufacturing process under different conditions. However, there is few investigations focused on microstructure simulation and mechanical properties control under different process parameters during DMD process. This dissertation is intended to develop a multiscale model to investigate Ti6Al4V grain structure development and explore Ti6Al4V based functionally graded material (FGM) deposit properties during DMD process. The first research topic is to investigate and develop a cellular automaton-finite element …


Monitoring Of Hybrid Manufacturing Using Acoustic Emission Sensor, Haythem Gaja Jan 2018

Monitoring Of Hybrid Manufacturing Using Acoustic Emission Sensor, Haythem Gaja

Doctoral Dissertations

"The approach of hybrid manufacturing addressed in this research uses two manufacturing processes, one process builds a metal part using laser metal deposition, and the other process finishes the part using a milling machining. The ability to produce complete functioning parts in a short time with minimal cost and energy consumption has made hybrid manufacturing popular in many industries for parts repair and rapid prototyping. Monitoring of hybrid manufacturing processes has become popular because it increases the quality and accuracy of the parts produced and reduces both costs and production time. The goal of this work is to monitor the …


Modeling And Characterization Of Thermo-Oxidative Behavior Of Bismaleimide Composites, Rafid Muhammad Hussein Jan 2018

Modeling And Characterization Of Thermo-Oxidative Behavior Of Bismaleimide Composites, Rafid Muhammad Hussein

Doctoral Dissertations

"High-temperature polymer matrix composites (HTPMCs) are susceptible to thermo-oxidation, which accelerates the composites' degradation and reduces the service life. Mechanical properties of HTPMCs deteriorate due to coupled thermo-oxidation and cross-linking mechanisms. Bismaleimides (BMIs) are commonly used high-temperature resins for aerospace applications. This work presents the viability of using experimental weight loss to model the spatial distribution of oxidation when the oxidized polymer matrix is not discernible. Three tasks are introduced: (1) Anisotropic oxidation prediction using optimized weight loss behavior of bismaleimide composites, (2) A multi-scale modeling of thermo-oxidative effects on the flexural behavior of cross-ply bismaleimide composites, and (3) Thermo-oxidative …


Modeling And Control Of Probe-On-Probe Dynamics In Dual-Probe Atomic Force Microscopy, Ayad Al-Ogaidi Jan 2018

Modeling And Control Of Probe-On-Probe Dynamics In Dual-Probe Atomic Force Microscopy, Ayad Al-Ogaidi

Doctoral Dissertations

“The atomic force microscope (AFM) is a widely used instrument for imaging and direct manipulation of materials and particles at the nanoscale. The AFM uses a probe, which is a microcantilever with a sharp point at the end. Typically, the AFM is constructed with a single probe. The disadvantage of this construction is that it can only be used either for imaging or manipulation in one implementation. An AFM was constructed using two probes, permitting simultaneous imaging and manipulation. A dual-probe AFM (DP-AFM) provides a foundation for feedback controlled manipulation.

Paper I investigates probe-on-probe contact stability and examines the dynamics …


Effects Of Milling Methods, Cooling Strategies And End-Mill Coatings On Machinability In High Speed End-Milling Of Inconel- 718 Using Carbide End-Mills, Paras Mohan Jasra Jan 2018

Effects Of Milling Methods, Cooling Strategies And End-Mill Coatings On Machinability In High Speed End-Milling Of Inconel- 718 Using Carbide End-Mills, Paras Mohan Jasra

Doctoral Dissertations

“Inconel-718 superalloy is used extensively in aerospace and nuclear industries due to its excellent properties such as: high strength-to-weight ratio, ability to retain its properties at high temperature, high corrosion and creep resistance. However, Inconel-718 is characterized as a “difficult-to-cut metal”, because it poses severe problems during machining such as: high temperature at the cutting zone due to low thermal conductivity, hardening tendency at elevated temperature, high cutting forces, rapid tool wear and high chemical affinity with many cutting tools. Appropriate cooling strategies, milling methods, tool coatings and cutting speeds play important roles in addressing these problems. This research presents …