Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering

Cleveland State University

Materials Science

Publication Year

Articles 1 - 6 of 6

Full-Text Articles in Engineering

Mechanistic Understanding Of Phase Stability, Transformation, And Strengthening Mechanisms In Lightweight High Entropy Alloys And High Entropy Ceramics, Ganesh Walunj Aug 2022

Mechanistic Understanding Of Phase Stability, Transformation, And Strengthening Mechanisms In Lightweight High Entropy Alloys And High Entropy Ceramics, Ganesh Walunj

ETD Archive

High-entropy alloys (HEAs) are a novel family of solid-solution alloys that have gained international interest due to their exceptional characteristics. Because of the need from the transportation and defense sectors, lightweight HEAs have attracted researcher’s curiosity as prospective advanced materials. Low-weight high entropy alloy synthesizes using arc melting with a mass ratio of AlCrFeMnTix(0.1,0.15,0.2). The synthesized HEA is comprised of a mixture of body center cubic (bcc) and ordered bcc (L21) solid solution phases. The synthesized HEAs have heat treated at 650C, 800C, and 1150C for 1hr, 4hr after solutionized at 1150C for 2 hr to understand the effect of …


Mechanistic Undrestanding Of Amorphization In Iron-Based Soft Magnetic Materials, Taban Larimian May 2022

Mechanistic Undrestanding Of Amorphization In Iron-Based Soft Magnetic Materials, Taban Larimian

ETD Archive

Iron-based magnetic alloys possess very good magnetic and mechanical properties. Among these alloys Fe-Si-B-based alloys show outstanding saturation magnetization and coercivity which makes them great candidates for many industrial applications. Addition of certain elements to the Fe-Si-B base is proven to improve the homogeneity and fineness of microstructure as well as enhance the magnetic behavior of these alloys. In this research work, we have studied the effect of adding copper and niobium to the Fe-Si-B base alloy. Previous studies have shown that magnetic alloys show better magnetic properties when their microstructure consists of nanocrystals embedded in an amorphous matrix. In …


An Evaluation And Economic Analysis Of A Water Main Geothermal System In A Residential Space, Brian L. Kohut Apr 2022

An Evaluation And Economic Analysis Of A Water Main Geothermal System In A Residential Space, Brian L. Kohut

ETD Archive

Iron-based magnetic alloys possess very good magnetic and mechanical properties. Among these alloys Fe-Si-B-based alloys show outstanding saturation magnetization and coercivity which makes them great candidates for many industrial applications. Addition of certain elements to the Fe-Si-B base is proven to improve the homogeneity and fineness of microstructure as well as enhance the magnetic behavior of these alloys. In this research work, we have studied the effect of adding copper and niobium to the Fe-Si-B base alloy. Previous studies have shown that magnetic alloys show better magnetic properties when their microstructure consists of nanocrystals embedded in an amorphous matrix. In …


Advanced Processing Of Nickel-Titanium-Graphite Based Metal Matrix Composites, Amit K. Patil Jan 2019

Advanced Processing Of Nickel-Titanium-Graphite Based Metal Matrix Composites, Amit K. Patil

ETD Archive

A new class of in situ titanium carbide (TiC)/graphite (C) reinforced nickel matrix composites with variation in composition particularly varying C/Ti ratio have been processed using two different processing techniques. Firstly, via mechanical alloying (MA) followed by spark plasma sintering (SPS), i.e. solid-state processing. Secondly, using Laser engineered net shaping (LENSTM) technique, i.e. metal additive manufacturing technique. Mechanical alloying has gained special attention as a powerful non-equilibrium process for fabricating amorphous and nanocrystalline materials, whereas spark plasma sintering is a unique technique for processing dense and near net shape bulk alloys with homogeneous microstructure. Laser engineered net shaping (LENSTM) is …


Advanced Manufacturing Of Titanium Alloys For Biomedical Applications, Nicholas C. Mavros Jan 2018

Advanced Manufacturing Of Titanium Alloys For Biomedical Applications, Nicholas C. Mavros

ETD Archive

In metallurgy, Titanium has been a staple for biomedical purposes. Its low toxicity and alloying versatility make it an attractive choice for medical applications. However, studies have shown the difference in elastic modulus between Titanium alloys (116 GPa) and human bone (40-60 GPa) contribute to long term issues with loose hardware fixation. Additionally, long term studies have shown elements such as Vanadium and Aluminum, which are commonly used in Ti-6Al-4V biomedical alloys, have been linked to neurodegenerative diseases like Alzheimers and Parkinsons. Alternative metals known to be less toxic are being explored as replacements for alloying elements in Titanium alloys. …


Forming A Metal Matrix Nanocomposite (Mmnc) With Fully Dispersed And Deagglomerated Multiwalled Carbon Nanotubes (Mwcnts), Mahesh Kumar Pallikonda Jan 2017

Forming A Metal Matrix Nanocomposite (Mmnc) With Fully Dispersed And Deagglomerated Multiwalled Carbon Nanotubes (Mwcnts), Mahesh Kumar Pallikonda

ETD Archive

Carbon Nanotubes (CNTs) with their exceptional properties will facilitate the Metal matrix composites (MMC) to exhibit good mechanical properties, thermal and electrical conductivities, corrosion resistance, etc. The critical factor that holds the development of the Metal matrix Nanocomposites (MMNC) by using CNTs is the tendency of CNTs to form clusters (agglomerations) due to their high Van der Waals attractions. Due to this factor, low density and other properties of the CNTs, there has been a delay in harnessing their ultimate potential.
Existing literature in contemporary times from the works of few researches in Nanocomposites shows the prevalence of using surfactants …