Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering

California Polytechnic State University, San Luis Obispo

Theses/Dissertations

Boundary layer

Articles 1 - 5 of 5

Full-Text Articles in Engineering

A Study Of Constant Voltage Anemometry Frequency Response, Alex D. Powers Jun 2016

A Study Of Constant Voltage Anemometry Frequency Response, Alex D. Powers

Master's Theses

The development of the constant voltage anemometer (CVA) for the boundary layer data system (BLDS) has been motivated by a need for the explicit autonomous measurement of velocity fluctuations in the boundary layer. The frequency response of a sensor operated by CVA has been studied analytically and experimentally. The thermal lag of the sensor is quantified by a time constant, MCVA. When the time constant is decreased, the half-amplitude cut-off frequency, fCVA, is increased, thereby decreasing the amount of attenuation during measurements. In this thesis, three main approaches have been outlined in theory and tested experimentally …


Development Of An Autonomous Single-Point Calibration For A Constant Voltage Hot-Wire Anemometer, Ryan Murphy Mar 2015

Development Of An Autonomous Single-Point Calibration For A Constant Voltage Hot-Wire Anemometer, Ryan Murphy

Master's Theses

Traditionally, the measurement of turbulence has been conducted using hot-wire anemometry. This thesis presents the implementation of a constant voltage hot-wire anemometer for use with the Boundary Layer Data System (BLDS). A hot-wire calibration apparatus has been developed that is capable of operation inside a vacuum chamber and flow speeds up to 50 m/s. Hot-wires operated with a constant-voltage anemometer (CVA) were calibrated at absolute static pressures down to 26 kPa. A thermal/electrical model for a hot-wire and the CVA circuit successfully predicted the measured CVA output voltage trend at reduced pressure environments; however, better results were obtained when the …


Constant Voltage Hot-Wire Anemometry For The Boundary Layer Data System, Hon Yee Li Dec 2013

Constant Voltage Hot-Wire Anemometry For The Boundary Layer Data System, Hon Yee Li

Master's Theses

To continue the development of the Boundary Layer Data System (BLDS), a constant voltage hot-wire anemometer (CVA) is implemented into the BLDS for flight-testing. The hot-wire anemometer was chosen as an alternative to the traditional pressure probe because of the ability to measure both average velocity and fluctuating velocity within the boundary layer. Previous work done on the benchtop has led to the design of miniaturization, flight-capable hardware for the BLDS. The next step in the development of the BLDS – CVA calls for quantifying the accuracy of the boundary layer measurements measured by the CVA system. To do this, …


Microphone-Based Pressure Diagnostics For Boundary Layer Transition, Spencer Everett Lillywhite Jul 2013

Microphone-Based Pressure Diagnostics For Boundary Layer Transition, Spencer Everett Lillywhite

Master's Theses

An experimental investigation of the use low-cost microphones for unsteady total pressure measurement to detect transition from laminar to turbulent boundary layer flow has been conducted. Two small electret condenser microphones, the Knowles FG-23629 and the FG-23742, were used to measure the pressure fluctuations and considered for possible integration with an autonomous boundary layer measurement system. Procedures to determine the microphones’ maximum sound pressure levels and frequency response using an acoustic source provided by a speaker and a reference microphone. These studies showed that both microphones possess a very flat frequency response and that the max SPL of the FG-23629 …


Boundary Layer Data System (Blds) Heating System, John Hauge, Drew Hutcheson, Paul Scott Dec 2009

Boundary Layer Data System (Blds) Heating System, John Hauge, Drew Hutcheson, Paul Scott

Mechanical Engineering

The boundary layer data system (BLDS) is the result of a collaborative effort between Dr. Westphal, a researcher and instructor at Cal Poly, and Northrop Grumman. The BLDS is capable of measuring the boundary layer profile and characteristics of flow over aerodynamic surfaces and is intended for high altitude, high speed use. The instruments inside the BLDS malfunction at the low temperatures present when operating in flight at altitudes above 30,000 ft. To solve this problem, analysis was done on the existing BLDS which determined the heating requirements, around 50 watts, needed to keep the internal temperature within the rated …