Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering

California Polytechnic State University, San Luis Obispo

Series

Mixture

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Simulating The Growth Of Articular Cartilage Explants In A Permeation Bioreactor To Aid In Experimental Protocol Design, Timothy P. Ficklin, Andrew Davol, Stephen M. Klisch Apr 2009

Simulating The Growth Of Articular Cartilage Explants In A Permeation Bioreactor To Aid In Experimental Protocol Design, Timothy P. Ficklin, Andrew Davol, Stephen M. Klisch

Mechanical Engineering

Recently a cartilage growth finite element model (CGFEM) was developed to solve nonhomogeneous and time-dependent growth boundary-value problems (Davol et al., 2008, “A Nonlinear Finite Element Model of Cartilage Growth,” Biomech. Model. Mechanobiol., 7, pp. 295–307). The CGFEM allows distinct stress constitutive equations and growth laws for the major components of the solid matrix, collagens and proteoglycans. The objective of the current work was to simulate in vitro growth of articular cartilage explants in a steady-state permeation bioreactor in order to obtain results that aid experimental design. The steady-state permeation protocol induces different types of mechanical stimuli. When the specimen …


Volumetric Growth Of Thermoelastic Materials And Mixtures, Stephen M. Klisch, Anne Hoger Aug 2003

Volumetric Growth Of Thermoelastic Materials And Mixtures, Stephen M. Klisch, Anne Hoger

Mechanical Engineering

The proteoglycan and collagen constituents of cartilage serve distinct mechanical roles. Changes to the mechanical loading conditions during cartilage growth lead to changes in the concentrations of these molecules and, consequently, the mechanical properties. The main aim of this paper is to present a theory that can describe the mechanical aspects of cartilage growth. The model for cartilage growth is based on a general thermomechanical theory for a mixture of an arbitrary number of growing elastic constituents and an inviscid fluid. Our development of a growth mixture theory is accomplished in two steps. First, the thermodynamics of growing elastic materials …