Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering

Air Force Institute of Technology

2023

Additive manufacturing

Articles 1 - 4 of 4

Full-Text Articles in Engineering

A Hybrid Metaheuristic And Computer Vision Approach To Closed-Loop Calibration Of Fused Deposition Modeling 3d Printers, Graig S. Ganitano, Shay V. Wallace, Benji Maruyama, Gilbert L. Peterson Jul 2023

A Hybrid Metaheuristic And Computer Vision Approach To Closed-Loop Calibration Of Fused Deposition Modeling 3d Printers, Graig S. Ganitano, Shay V. Wallace, Benji Maruyama, Gilbert L. Peterson

Faculty Publications

Fused deposition modeling (FDM) is one of the most popular additive manufacturing (AM) technologies for reasons including its low cost and versatility. However, like many AM technologies, the FDM process is sensitive to changes in the feedstock material. Utilizing a new feedstock requires a time-consuming trial-and-error process to identify optimal settings for a large number of process parameters. The experience required to efficiently calibrate a printer to a new feedstock acts as a barrier to entry. To enable greater accessibility to non-expert users, this paper presents the first system for autonomous calibration of low-cost FDM 3D printers that demonstrates optimizing …


Fast-, Light-Cured Scintillating Plastic For 3d-Printing Applications, Brian G. Frandsen, Michael Febbraro, Thomas Ruland, Theodore W. Stephens, Paul A. Hausladen, Juan J. Manfredi, James E. Bevins Mar 2023

Fast-, Light-Cured Scintillating Plastic For 3d-Printing Applications, Brian G. Frandsen, Michael Febbraro, Thomas Ruland, Theodore W. Stephens, Paul A. Hausladen, Juan J. Manfredi, James E. Bevins

Faculty Publications

Additive manufacturing techniques enable a wide range of possibilities for novel radiation detectors spanning simple to highly complex geometries, multi-material composites, and metamaterials that are either impossible or cost prohibitive to produce using conventional methods. The present work identifies a set of promising formulations of photocurable scintillator resins capable of neutron-gamma pulse shape discrimination (PSD) to support the additive manufacturing of fast neutron detectors. The development of these resins utilizes a step-by-step, trial-and-error approach to identify different monomer and cross-linker combinations that meet the requirements for 3D printing followed by a 2-level factorial parameter study to optimize the radiation detection …


Development Of Novel Turbomachinery Manufacturing Methods, Timothy P. Winkler Mar 2023

Development Of Novel Turbomachinery Manufacturing Methods, Timothy P. Winkler

Theses and Dissertations

Compact turbine engines are of increasing interest as a means of propulsion for small, lightweight, low cost, unmanned aerial systems. This study looks to leverage advancements in novel manufacturing technology to produce turbomachinery components while simultaneously reducing costs and manufacturing time. To determine the feasibility of drop-in replacements for stock components this study focused on several research areas. This included materials research on both polymer-reinforced and ceramic materials, specimen tensile testing to determine temperature-dependent material properties, finite element analysis of multiple candidate materials, design and fabrication of a spin test rig, and physical spin testing of manufactured components to predict …


Material Property Dependence Of Nanoparticle Silicon Carbide Alloying In Additively Manufactured Molybdenum, Andrew P. Mason Mar 2023

Material Property Dependence Of Nanoparticle Silicon Carbide Alloying In Additively Manufactured Molybdenum, Andrew P. Mason

Theses and Dissertations

The structural performance of additively manufactured Mo printed by LPBF can be significantly improved by nanoparticle alloying. Previous AFIT studies of SiC nanoparticle addition conducted by Ellsworth (2022) et al. demonstrated increased powder consolidation, leading to reduced porosity, increased microhardness, and a shift in atomic defect concentrations. The addition of defected SiC particles is proposed to reduce in situ oxidation by acting as a sacrificial oxidizing agent and contributing to the formation of Mo disilicide secondary phases. This study investigated the relationship between laser powder bed fusion Mo microscale and nanoscale properties with varying SiC particle size while maintaining a …