Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 25 of 25

Full-Text Articles in Engineering

Residual Stress Generation In Additive Manufacturing Of Complex Lattice Geometries, Katie Bruggeman, Nathan Klingbeil, Anthony N. Palazotto Feb 2024

Residual Stress Generation In Additive Manufacturing Of Complex Lattice Geometries, Katie Bruggeman, Nathan Klingbeil, Anthony N. Palazotto

Faculty Publications

Residual stresses developed during additive manufacturing (AM) can influence the mechanical performance of structural components in their intended applications. In this study, thermomechanical residual stress simulations of the laser powder bed fusion (LPBF) process are conducted for both simplified (plate and cube-shaped) geometries as well as five complex lattice geometries fabricated with Inconel 718. These simulations are conducted with the commercial software package Simufact Additive©, which uses a nonlinear finite element analysis and layer-by-layer averaging approach in determining residual stresses. To verify the efficacy of the Simufact Additive© simulations, numerical results for the plate and cube-shape geometries are analyzed for …


Impact Of Silicon Ion Irradiation On Aluminum Nitride-Transduced Microelectromechanical Resonators, David D. Lynes, Joshua Young, Eric Lang, Hengky Chandrahalim Nov 2023

Impact Of Silicon Ion Irradiation On Aluminum Nitride-Transduced Microelectromechanical Resonators, David D. Lynes, Joshua Young, Eric Lang, Hengky Chandrahalim

Faculty Publications

Microelectromechanical systems (MEMS) resonators use is widespread, from electronic filters and oscillators to physical sensors such as accelerometers and gyroscopes. These devices' ubiquity, small size, and low power consumption make them ideal for use in systems such as CubeSats, micro aerial vehicles, autonomous underwater vehicles, and micro-robots operating in radiation environments. Radiation's interaction with materials manifests as atomic displacement and ionization, resulting in mechanical and electronic property changes, photocurrents, and charge buildup. This study examines silicon (Si) ion irradiation's interaction with piezoelectrically transduced MEMS resonators. Furthermore, the effect of adding a dielectric silicon oxide (SiO2) thin film is …


Optical Fiber Tip Micro Anemometer, Jeremiah C. Williams, Hengky Chandrahalim Apr 2023

Optical Fiber Tip Micro Anemometer, Jeremiah C. Williams, Hengky Chandrahalim

AFIT Patents

A passive microscopic flow sensor includes a three-dimensional microscopic optical structure formed on a cleaved tip of an optical fiber. The three-dimensional microscopic optical structure includes a post attached off-center to and extending longitudinally from the cleaved tip of the optical fiber. A rotor of the three-dimensional microscopic optical structure is received for rotation on the post. The rotor has more than one blade. Each blade has a reflective undersurface that reflects a light signal back through the optical fiber when center aligned with the optical fiber, the blades of the rotor shaped to rotate at a rate related to …


Fast-, Light-Cured Scintillating Plastic For 3d-Printing Applications, Brian G. Frandsen, Michael Febbraro, Thomas Ruland, Theodore W. Stephens, Paul A. Hausladen, Juan J. Manfredi, James E. Bevins Mar 2023

Fast-, Light-Cured Scintillating Plastic For 3d-Printing Applications, Brian G. Frandsen, Michael Febbraro, Thomas Ruland, Theodore W. Stephens, Paul A. Hausladen, Juan J. Manfredi, James E. Bevins

Faculty Publications

Additive manufacturing techniques enable a wide range of possibilities for novel radiation detectors spanning simple to highly complex geometries, multi-material composites, and metamaterials that are either impossible or cost prohibitive to produce using conventional methods. The present work identifies a set of promising formulations of photocurable scintillator resins capable of neutron-gamma pulse shape discrimination (PSD) to support the additive manufacturing of fast neutron detectors. The development of these resins utilizes a step-by-step, trial-and-error approach to identify different monomer and cross-linker combinations that meet the requirements for 3D printing followed by a 2-level factorial parameter study to optimize the radiation detection …


Turbine Cooling System With Energy Separation, James L. Rutledge, Matthew Fuqua, Carol M. Bryant Sep 2022

Turbine Cooling System With Energy Separation, James L. Rutledge, Matthew Fuqua, Carol M. Bryant

AFIT Patents

A method and system for cooling an engine and/or vehicle using energy separation is disclosed herein. An energy separation device is operable for separating a compressed gaseous coolant stream into a first relatively cooler coolant flow stream and a second relatively hotter coolant flow stream. The relative cooler coolant flow stream is directed to a first region requiring increased cooling and the relative hotter coolant flow stream is directed to a second region requiring lower cooling than the first region in the engine or vehicle.


Influence Of Nano-Sized Sic On The Laser Powder Bed Fusion Of Molybdenum, Nathan E. Ellsworth, Ryan A. Kemnitz, Cayla C. Eckley, Brianna M. Sexton, Cynthia T. Bowers, Joshua R. Machacek, Larry W. Burggraf Sep 2022

Influence Of Nano-Sized Sic On The Laser Powder Bed Fusion Of Molybdenum, Nathan E. Ellsworth, Ryan A. Kemnitz, Cayla C. Eckley, Brianna M. Sexton, Cynthia T. Bowers, Joshua R. Machacek, Larry W. Burggraf

Faculty Publications

Consolidation of pure molybdenum through laser powder bed fusion and other additive manufacturing techniques is complicated by a high melting temperature, thermal conductivity and ductile-to-brittle transition temperature. Nano-sized SiC particles (0.1 wt%) were homogeneously mixed with molybdenum powder and the printing characteristics, chemical composition, microstructure, mechanical properties were compared to pure molybdenum for scan speeds of 100, 200, 400, and 800 mm/s. The addition of SiC improved the optically determined density and flexural strength at 400 mm/s by 92% and 80%, respectively. The oxygen content was reduced by an average of 52% over the four scan speeds analyzed. Two mechanisms …


Disk Engine With Circumferential Swirl Radial Combustor, Brian Bohan, Marc Polanka, Bennett Staton Aug 2022

Disk Engine With Circumferential Swirl Radial Combustor, Brian Bohan, Marc Polanka, Bennett Staton

AFIT Patents

A disk engine and system configured to provide high power at a reduced axial length is disclosed herein. The disk engine includes a radial compressor, a compressor discharge manifold positioned circumferentially about compressor, a combustion chamber positioned within the discharge manifold and a radial turbine positioned radially inward of the combustion chamber.


Computational Based Investigation Of Lattice Cell Optimization Under Uniaxial Compression Load, Derek G. Spear, Jeremiah S. Lane, Anthony N. Palazotto, Ryan A. Kemnitz Mar 2022

Computational Based Investigation Of Lattice Cell Optimization Under Uniaxial Compression Load, Derek G. Spear, Jeremiah S. Lane, Anthony N. Palazotto, Ryan A. Kemnitz

Faculty Publications

Structural optimization is a methodology used to generate novel structures within a design space by finding a maximum or minimum point within a set of constraints. Topology optimization, as a subset of structural optimization, is often used as a means for light-weighting a structure while maintaining mechanical performance. This article presents the mathematical basis for topology optimization, focused primarily on the Bi-directional Evolutionary Structural Optimization (BESO) and Solid Isotropic Material with Penalization (SIMP) methodologies, then applying the SIMP methodology to a case study of additively manufactured lattice cells. Three lattice designs were used: the Diamond, I-WP, and Primitive cells. These …


Thermo-Fluidic Transport Process In A Novel M-Shaped Cavity Packed With Non-Darcian Porous Medium And Hybrid Nanofluid: Application Of Artificial Neural Network (Ann), Dipak Kumar Mandal, Nirmalendu Biswas, Nirmal K. Manna, Dilip Kumar Gayen, Rama S. R. Gorla, Ali J. Chamkha Mar 2022

Thermo-Fluidic Transport Process In A Novel M-Shaped Cavity Packed With Non-Darcian Porous Medium And Hybrid Nanofluid: Application Of Artificial Neural Network (Ann), Dipak Kumar Mandal, Nirmalendu Biswas, Nirmal K. Manna, Dilip Kumar Gayen, Rama S. R. Gorla, Ali J. Chamkha

Faculty Publications

In this work, an attempt has been made to explore numerically the thermo-fluidic transport process in a novel M-shaped enclosure filled with permeable material along with Al2O3-Cu hybrid nanoparticles suspended in water under the influence of a horizontal magnetizing field. To exercise the influence of geometric parameters, a classical trapezoidal cavity is modified with an inverted triangle at the top to construct an M-shaped cavity. The cavity is heated isothermally from the bottom and cooled from the top, whereas the inclined sidewalls are insulated. The role of geometric parameters on the thermal performance is scrutinized thoroughly …


Magneto-Exothermic Catalytic Chemical Reaction Along A Curved Surface, Muhammad Ashraf, Uzma Ahmad, Saqib Zia, Rama S. R. Gorla, Amnah S. Al-Johani, Ilyas Khan, Mulugeta Andualem Jan 2022

Magneto-Exothermic Catalytic Chemical Reaction Along A Curved Surface, Muhammad Ashraf, Uzma Ahmad, Saqib Zia, Rama S. R. Gorla, Amnah S. Al-Johani, Ilyas Khan, Mulugeta Andualem

Faculty Publications

In the current study, the physical behavior of the boundary layer flows along a curved surface owing exothermic catalytic chemical reaction, and the magnetic field is investigated. The mathematical model comprised of a part of momentum, energy, and mass equations, which are solved using a finite difference method along with primitive variable formulation. Numerical solutions, using the method of quantitative differentiation, are made with the appropriate choice of dimensionless parameters. Analysis of the results obtained shows that the field temperature and flow of fluids are strongly influenced by the combined effects of catalytic chemical reactions and the magnetic field. The …


Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors, Hengky Chandrahalim, Jonathan W. Smith Dec 2021

Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors, Hengky Chandrahalim, Jonathan W. Smith

AFIT Patents

A passive microscopic Fabry-Pérot Interferometer (FPI) sensor an optical fiber a three-dimensional microscopic optical structure formed on a cleaved tip of an optical fighter that reflects a light signal back through the optical fiber. The reflected light is altered by refractive index changes in the three-dimensional structure that is subject to at least one of: (i) thermal radiation; and (ii) volatile organic compounds.


Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors, Hengky Chandrahalim, Jonathan W. Smith Mar 2021

Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors, Hengky Chandrahalim, Jonathan W. Smith

AFIT Patents

A passive microscopic Fabry-Pérot Interferometer (FPI) sensor an optical fiber a three-dimensional microscopic optical structure formed on a cleaved tip of an optical fighter that reflects a light signal back through the optical fiber. The reflected light is altered by refractive index changes in the three-dimensional structure that is subject to at least one of: (i) thermal radiation; and (ii) volatile organic compounds.


Thermal Ignition Of A Combustible Over An Inclined Hot Plate, Salaika Parvin, Nepal Chandra Roy, Rama S. R. Gorla Mar 2021

Thermal Ignition Of A Combustible Over An Inclined Hot Plate, Salaika Parvin, Nepal Chandra Roy, Rama S. R. Gorla

Faculty Publications

In this study, the ignition characteristics and the flow properties of the mixed convection flow are presented. Detailed formulations of the forced, natural and mixed convection problems have been discussed. In order to avoid inconvenient switch between the forced and natural convection we introduce a continuous transformation in the mixed convection. We make a comparison between these situations which reveal a good agreement. For mixed convection flow, the ignition distance is explicitly expressed as a function of the Prandtl number, reaction parameter and wall temperature. It has been observed that owing to the increase of the aforesaid parameters, the thermal …


Thermal Management Using Microelectromechanical Systems Bimorph Cantilever Beams, Ronald A. Coutu Jr., Robert S. Lafleur, John P. K. Walton, Laverne A. Starman Oct 2019

Thermal Management Using Microelectromechanical Systems Bimorph Cantilever Beams, Ronald A. Coutu Jr., Robert S. Lafleur, John P. K. Walton, Laverne A. Starman

AFIT Patents

A cooling structure for a heat source, where the cooling structure includes a beam having a first end and a second end and a length disposed therebetween. The beam is formed at least in part of a first material having a first thermal coefficient of expansion and a second material having a second thermal coefficient of expansion, where the first thermal coefficient of expansion is different from the second thermal coefficient of expansion. The first end of the beam is thermally connected to the heat source, such that heat generated by the heat source is conducted along the length of …


Numerical Simulation Of Heat Transfer And Chemistry In The Wake Behind A Hypersonic Slender Body At Angle Of Attack, Matthew J. Satchell, Jeffrey M. Layng, Robert B. Greendyke Mar 2018

Numerical Simulation Of Heat Transfer And Chemistry In The Wake Behind A Hypersonic Slender Body At Angle Of Attack, Matthew J. Satchell, Jeffrey M. Layng, Robert B. Greendyke

Faculty Publications

The effect of thermal and chemical boundary conditions on the structure and chemical composition of the wake behind a 3D Mach 7 sphere-cone at an angle of attack of 5 degrees and an altitude of roughly 30,000 m is explored. A special emphasis is placed on determining the number density of chemical species which might lead to detection via the electromagnetic spectrum. The use of non-ablating cold-wall, adiabatic, and radiative equilibrium wall boundary conditions are used to simulate extremes in potential thermal protection system designs. Non-ablating, as well as an ablating boundary condition using the “steady-state ablation” assumption to compute …


Method For Determining Time-Resolved Heat Transfer Coefficient And Adiabatic Effectiveness Waveforms With Unsteady Film Cooling, James L. Rutledge, Jonathan F. Mccall Apr 2016

Method For Determining Time-Resolved Heat Transfer Coefficient And Adiabatic Effectiveness Waveforms With Unsteady Film Cooling, James L. Rutledge, Jonathan F. Mccall

AFIT Patents

A new method for determining heat transfer coefficient (h) and adiabatic effectiveness (η) waveforms h(t) and η(t) from a single test uses a novel inverse heat transfer methodology to use surface temperature histories obtained using prior art approaches to approximate the h(t) and η(t) waveforms. The method best curve fits the data to a pair of truncated Fourier series.


Improved Sensitivity Mems Cantilever Sensor For Terahertz Photoacoustic Spectroscopy, Ronald A. Coutu Jr., Ivan R. Medvedev, Douglas T. Petkie Feb 2016

Improved Sensitivity Mems Cantilever Sensor For Terahertz Photoacoustic Spectroscopy, Ronald A. Coutu Jr., Ivan R. Medvedev, Douglas T. Petkie

Faculty Publications

In this paper, a microelectromechanical system (MEMS) cantilever sensor was designed, modeled and fabricated to measure the terahertz (THz) radiation induced photoacoustic (PA) response of gases under low vacuum conditions. This work vastly improves cantilever sensitivity over previous efforts, by reducing internal beam stresses, minimizing out of plane beam curvature and optimizing beam damping. In addition, fabrication yield was improved by approximately 50% by filleting the cantilever’s anchor and free end to help reduce high stress areas that occurred during device fabrication and processing. All of the cantilever sensors were fabricated using silicon-on-insulator (SOI) wafers and tested in a custom …


System And Method For Identifying Electrical Properties Of Integrate Circuits, Mary Y. Lanzerotti Jan 2016

System And Method For Identifying Electrical Properties Of Integrate Circuits, Mary Y. Lanzerotti

AFIT Patents

A new method for displaying electrical properties for integrated circuit (IC) layout designs provides for improved human visualization of those properties and comparison of as designed layout design parameters to as specified layout design parameters and to as manufactured layout parameters. The method starts with a circuitry as designed layout in a first digital format, extracts values for electrical properties from that circuitry as designed layout then annotates those values back into the first digital format. The annotated circuitry as designed layout is then converted from the first digital format to a second digital format that can be converted to …


Mems Fabrication Process Base On Su-8 Masking Layers, Scott A. Ostrow, Ronald A. Coutu Jr. Nov 2013

Mems Fabrication Process Base On Su-8 Masking Layers, Scott A. Ostrow, Ronald A. Coutu Jr.

AFIT Patents

A novel fabrication process uses a combination of negative and positive photoresists with positive tone photomasks, resulting in masking layers suitable for bulk micromachining high-aspect ratio microelectromechanical systems (MEMS) devices. This technique allows the use of positive photomasks with negative resists, opening the door to an ability to create complementary mechanical structures without the fabrication delays and costs associated with having to obtain a negative photomask. In addition, whereas an SU-8 mask would normally be left in place after processing, a technique utilizing a positive photoresist as a release layer has been developed so that the SU-8 masking material can …


Digitally Programmable Rf Mems Filters With Mechanically Coupled Resonators, Hengky Chandrahalim, Sunil Ashok Bhave Mar 2013

Digitally Programmable Rf Mems Filters With Mechanically Coupled Resonators, Hengky Chandrahalim, Sunil Ashok Bhave

AFIT Patents

A digitally-tunable RF MEMS filter includes a substrate and a plurality of mechanically coupled resonators, wherein a first and a last resonator of the plurality of mechanically coupled resonators are configured to be electrostatically transduced. One or more of the plurality of mechanically coupled resonators are configured to be biased relative to the substrate such that the one or more biased resonators may be brought substantially in contact with the substrate. In a method of digitally tuning an RF MEMS filter having a mechanically coupled resonator array, a DC bias voltage is applied to at least a first resonator and …


Shaped Mems Contact, Ronald A. Coutu Jr., Paul E. Kladitis, Robert L. Crane Mar 2011

Shaped Mems Contact, Ronald A. Coutu Jr., Paul E. Kladitis, Robert L. Crane

AFIT Patents

A MEMS switch fabrication process and apparatus inclusive of a bulbous rounded surface movable contact assembly that is integral with the switch movable element and achieving of long contact wear life with low contact electrical resistance. The disclosed process is compatible with semiconductor integrated circuit fabrication materials and procedures and includes an unusual photoresist reflow step in which the bulbous contact shape is quickly defined in three dimensions from more easily achieved integrated circuit mask and etching-defined precursor shapes. A plurality of differing photoresist materials are used in the process. A large part of the contact and contact spring formation …


Shaped Mems Contact, Ronald A. Coutu Jr., Paul E. Kladitis, Robert L. Crane Oct 2009

Shaped Mems Contact, Ronald A. Coutu Jr., Paul E. Kladitis, Robert L. Crane

AFIT Patents

A MEMS switch fabrication process and apparatus inclusive of a bulbous rounded surface movable contact assembly that is integral with the switch movable element and achieving of long contact wear life with low contact electrical resistance. The disclosed process is compatible with semiconductor integrated circuit fabrication materials and procedures and includes an unusual photoresist reflow step in which the bulbous contact shape is quickly defined in three dimensions from more easily achieved integrated circuit mask and etching-defined precursor shapes. A plurality of differing photoresist materials are used in the process. A large part of the contact and contact spring formation …


Performance Comparison Of Pb(Zr0.52Ti0.48)O3-Only And Pb(Zr0.52Ti0.48)O3-On-Silicon Resonators, Hengky Chandrahalim, Sunil A. Bhave, Ronald G. Polcawich, Jeff Pulskamp, Dan Judy, Roger Kaul, Madan Dubey Jan 2008

Performance Comparison Of Pb(Zr0.52Ti0.48)O3-Only And Pb(Zr0.52Ti0.48)O3-On-Silicon Resonators, Hengky Chandrahalim, Sunil A. Bhave, Ronald G. Polcawich, Jeff Pulskamp, Dan Judy, Roger Kaul, Madan Dubey

Faculty Publications

This paper provides a quantitative comparison and explores the design space of lead zirconium titanate (PZT)–only and PZT-on-silicon length-extensional mode resonators for incorporation into radio frequency microelectromechanical system filters and oscillators. We experimentally measured the correlation of motional impedance (RX) and quality factor (Q) with the resonators’ silicon layer thickness (tSi). For identical lateral dimensions and PZT-layer thicknesses (tPZT), the PZT-on-silicon resonator has higher resonant frequency (fC), higher Q (5100 versus 140), lower RX (51 Ω versus 205 Ω), and better linearity [third-order input intercept …


Radio Frequency Mems Switch Contact Metal Selection, Ronald A. Coutu Jr., Paul E. Kladitis, Robert L. Crane, Kevin D. Leedy Jun 2007

Radio Frequency Mems Switch Contact Metal Selection, Ronald A. Coutu Jr., Paul E. Kladitis, Robert L. Crane, Kevin D. Leedy

AFIT Patents

A method for selecting metal alloys as the electric contact materials for microelectromechanical systems (MEMS) metal contact switches. This method includes a review of alloy experience, consideration of equilibrium binary alloy phase diagrams, obtaining thin film material properties and, based on a suitable model, predicting contact electrical resistance performance. After determination of a candidate alloy material, MEMS switches are conceptualized, fabricated and tested to validate the alloy selection methodology. Minimum average contact resistance values of 1.17 and 1.87 ohms are achieved for micro-switches with gold (Au) and gold-platinum (Au-(6.3 at %)Pt) alloy contacts. In addition, `hot-switched` life cycle test results …


Variable Area Inlet For Vehicle Thermal Control, Thomas R. Layne, Milton E. Franke, Darrell B. Ridgedly Apr 1999

Variable Area Inlet For Vehicle Thermal Control, Thomas R. Layne, Milton E. Franke, Darrell B. Ridgedly

AFIT Patents

A variable area inlet structure for a vehicle utilizing ram air for coolant is described which comprises a variable area inlet device in the ram air inlet in the form of a butterfly valve, damper, shutter, or similar structure, a temperature sensor in thermal contact with a component within the vehicle to be cooled by ram air flow, a controller and actuator, responsive to the temperature sensor and operatively connected to the variable area device, for controlling the inlet area in response to the component temperature.