Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

Molecular dynamics

Institution
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 58

Full-Text Articles in Engineering

Molecular Dynamics Study Of Characterization In Metal-Free Friction Materials, Yizhan Zhang Nov 2023

Molecular Dynamics Study Of Characterization In Metal-Free Friction Materials, Yizhan Zhang

Electronic Theses and Dissertations

Metallic friction materials currently used in industry may adversely impact the environment. Substitutions for metals in friction materials, on the other hand, can introduce operational safety issues and other unforeseeable issues such as thermal-mechanical instabilities and insufficient strength. In view of it, this dissertation focuses on developing different kinds of materials from simple structure to complex structure and evaluating the material properties with the assistance of molecular dynamics (MD) tools at the nano scale.

First, the concept of the contacted surfaces in friction at the atomic scale was introduced in order to get accurate understanding of the friction process compared …


Establishing Physical And Chemical Mechanisms Of Polymerization And Pyrolysis Of Phenolic Resins For Carbon-Carbon Composites, Ivan Gallegos, Josh Kemppainen, Jacob R. Gissinger, Malgorzata Kowalik, Adri Van Duin, Kristopher E. Wise, S. Gowtham, Gregory Odegard Sep 2023

Establishing Physical And Chemical Mechanisms Of Polymerization And Pyrolysis Of Phenolic Resins For Carbon-Carbon Composites, Ivan Gallegos, Josh Kemppainen, Jacob R. Gissinger, Malgorzata Kowalik, Adri Van Duin, Kristopher E. Wise, S. Gowtham, Gregory Odegard

Michigan Tech Publications, Part 2

The complex structural and chemical changes that occur during polymerization and pyrolysis critically affect material properties but are difficult to characterize in situ. This work presents a novel, experimentally validated methodology for modeling the complete polymerization and pyrolysis processes for phenolic resin using reactive molecular dynamics. The polymerization simulations produced polymerized structures with mass densities of 1.24 ± 0.01 g/cm3 and Young's moduli of 3.50 ± 0.64 GPa, which are in good agreement with experimental values. The structural properties of the subsequently pyrolyzed structures were also found to be in good agreement with experimental X-ray data for the phenolic-derived carbon …


Molecular Dynamic Studies Of Dye–Dye And Dye–Dna Interactions Governing Excitonic Coupling In Squaraine Aggregates Templated By Dna Holliday Junctions, German Barcenas, Austin Biaggne, Olga A. Mass, William B. Knowlton, Bernard Yurke, Lan Li Feb 2023

Molecular Dynamic Studies Of Dye–Dye And Dye–Dna Interactions Governing Excitonic Coupling In Squaraine Aggregates Templated By Dna Holliday Junctions, German Barcenas, Austin Biaggne, Olga A. Mass, William B. Knowlton, Bernard Yurke, Lan Li

Materials Science and Engineering Faculty Publications and Presentations

Dye molecules, arranged in an aggregate, can display excitonic delocalization. The use of DNA scaffolding to control aggregate configurations and delocalization is of research interest. Here, we applied Molecular Dynamics (MD) to gain an insight on how dye–DNA interactions affect excitonic coupling between two squaraine (SQ) dyes covalently attached to a DNA Holliday junction (HJ). We studied two types of dimer configurations, i.e., adjacent and transverse, which differed in points of dye covalent attachments to DNA. Three structurally different SQ dyes with similar hydrophobicity were chosen to investigate the sensitivity of excitonic coupling to dye placement. Each dimer configuration was …


Probing Dna Structural Heterogeneity By Identifying Conformational Subensembles Of A Bicovalently Bound Cyanine Dye, Matthew S. Barclay, Azhad U. Chowdhury, Austin Biaggne, Jonathan S. Huff, Nicholas D. Wright, Paul H. Davis, Lan Li, William B. Knowlton, Bernard Yurke, Ryan D. Pensack, Daniel B. Turner Jan 2023

Probing Dna Structural Heterogeneity By Identifying Conformational Subensembles Of A Bicovalently Bound Cyanine Dye, Matthew S. Barclay, Azhad U. Chowdhury, Austin Biaggne, Jonathan S. Huff, Nicholas D. Wright, Paul H. Davis, Lan Li, William B. Knowlton, Bernard Yurke, Ryan D. Pensack, Daniel B. Turner

Materials Science and Engineering Faculty Publications and Presentations

DNA is a re-configurable, biological information-storage unit, and much remains to be learned about its heterogeneous structural dynamics. For example, while it is known that molecular dyes templated onto DNA exhibit increased photostability, the mechanism by which the structural dynamics of DNA affect the dye photophysics remains unknown. Here, we use femtosecond, two-dimensional electronic spectroscopy measurements of a cyanine dye, Cy5, to probe local conformations in samples of single-stranded DNA (ssDNA–Cy5), double-stranded DNA (dsDNA–Cy5), and Holliday junction DNA (HJ–DNA–Cy5). A line shape analysis of the 2D spectra reveals a strong excitation–emission correlation present in only the dsDNA–Cy5 complex, which is …


Study Of Nanocomposite Materials Using Molecular Dynamics, Prashik Sunil Gaikwad Jan 2023

Study Of Nanocomposite Materials Using Molecular Dynamics, Prashik Sunil Gaikwad

Dissertations, Master's Theses and Master's Reports

There is an increase in demand for new lightweight structural materials in the aerospace industry for more efficient and affordable human space travel. Polymer matrix composites (PMCs) with reinforcement material as carbon nanotubes (CNTs) have shown exceptional increase in the mechanical properties. Flattened carbon nanotubes (flCNTs) are a primary component of many carbon nanotube (CNT) yarn and sheet materials, which are promising reinforcements for the next generation of ultra-strong composites for aerospace applications. These flCNT/polymer materials are subjected to extreme pressure and temperature during curing process. Therefore there is a need to investigate the evolution of properties during the curing …


Development Of Interatomic Potential Of High Entropy Diborides With Artificial Intelligence Approach To Simulate The Thermo-Mechanical Properties, Nur Aziz Octoviawan Jan 2023

Development Of Interatomic Potential Of High Entropy Diborides With Artificial Intelligence Approach To Simulate The Thermo-Mechanical Properties, Nur Aziz Octoviawan

MSU Graduate Theses

The interatomic potentials designed for binary/high entropy diborides and ultra-high temperature composites (UHTC) have been developed through the implementation of deep neural network (DNN) algorithms. These algorithms employed two different approaches and corresponding codes; 1) strictly local & invariant scalar-based descriptors as implemented in the DEEPMD code and 2) equivariant tensor-based descriptors as included in the ALLEGRO code. The samples for training and validation sets of the forces, energy, and virial data were obtained from the ab-initio molecular dynamics (AIMD) simulations and Density Functional Theory (DFT) calculations, including the simulation data from the ultra-high temperature region (> 2000K). The study …


Machine Learning Strategies For Potential Development In High-Entropy Driven Nickel-Based Superalloys, Marium Mostafiz Mou Jan 2023

Machine Learning Strategies For Potential Development In High-Entropy Driven Nickel-Based Superalloys, Marium Mostafiz Mou

MSU Graduate Theses

In this study, I developed Deep Learning interatomic potentials to model a multi-phase and multi-component system of Ni-based Superalloys. The system has up to three major phase constituents, namely Gamma, Gamma Prime, and Transition-metal rich Carbide. I utilized invariant scalar-based and/or equivariant, tensor-based neural network (NN) approach as implemented in DEEPMD, NEQUIP/ALLEGRO codes, respectively, and Moment Tensor Potential (MTP). For the training and validation sets, I employed the ab-initio molecular dynamics (AIMD) trajectory results and ground state DFT calculations, including the energy, force, and virial database from highly diverse compositions, temperatures, and pressures following a “High Entropy Strategy.” The Deep …


Elucidating The Interfacial Bonding Behavior Of Over-Molded Hybrid Fiber Reinforced Polymer Composites: Experiment And Multiscale Numerical Simulation, Gideon A. Lyngdoh, Sumanta Das Sep 2022

Elucidating The Interfacial Bonding Behavior Of Over-Molded Hybrid Fiber Reinforced Polymer Composites: Experiment And Multiscale Numerical Simulation, Gideon A. Lyngdoh, Sumanta Das

Faculty Publications - Biomedical, Mechanical, and Civil Engineering

This paper implements molecular dynamics (MD) simulation using reactive force field (ReaxFF) to evaluate the

atomistic origin of the interfacial behavior in the overmolded hybrid unidirectional continuous carbon fiber low-melt PAEK (CFR- LMPAEK)-short carbon fiber reinforced PEEK (SFR-PEEK) polymer composites. From the MD simulation, it was observed that the

interfacial properties improve with increasing maximum processing temperature and injection pressure although such an improving trajectory gets saturated beyond specific limits. The interfacial strength and fracture response of the hybrid polymer system at the interface are also evaluated. The mechanical responses obtained from MD simulation are used as adhesive properties in …


Combinatorial Approaches For Effective Design, Synthesis, And Optimization Of Enzyme-Based Conjugates, Jordan Scott Chapman Jan 2022

Combinatorial Approaches For Effective Design, Synthesis, And Optimization Of Enzyme-Based Conjugates, Jordan Scott Chapman

Graduate Theses, Dissertations, and Problem Reports

The specificity and efficiency with which enzymes catalyze selective chemical reactions far exceeds the performance of traditional heterogeneous catalysts that are predominant in industrial applications such as conversion of commodity chemicals to value-added products, fuel cells, and petroleum refinement. Moreover, biocatalysts exhibit exceptionally high product turnover at ambient conditions with little health and environmental burden. These advantageous qualities have led to the prolific use of enzyme catalysis in pharmaceutical, detergents, and food preservation industries wherein their use has greatly reduced waste generation, Unfortunately, the full slate of benefits that enzymes can impart to a broader range of chemical processes is …


Molecular Modeling Of High-Performance Polymers, Sagar Umesh Patil Jan 2022

Molecular Modeling Of High-Performance Polymers, Sagar Umesh Patil

Dissertations, Master's Theses and Master's Reports

High-performance polymers are extensively used in the aerospace and aeronautics industries due to their low density, high specific strength, and high specific stiffness. These properties along with better infiltration with reinforcements [carbon nanotubes (CNTs), glass, etc.] capability make them an excellent candidate to fabricate Polymer Matrix Composites (PMCs) tailored for specific applications. The applications range from products used daily to deep space exploration. These materials are subjected to varying temperatures and pressures during fabrication and in service. Therefore, the evolution of their intrinsic properties needs to be studied and their ability to sustain extreme environmental conditions in outer space needs …


Predictive Computational Materials Modeling With Machine Learning: Creating The Next Generation Of Atomistic Potential Using Neural Networks, Mashroor Shafat Nitol Dec 2021

Predictive Computational Materials Modeling With Machine Learning: Creating The Next Generation Of Atomistic Potential Using Neural Networks, Mashroor Shafat Nitol

Theses and Dissertations

Machine learning techniques using artificial neural networks (ANNs) have proven to be effective tools to rapidly mimic first principles calculations. These tools are capable of sub meV/atom accuracy while operating with linear scaling with respect to the system size. Here novel interatomic potentials are constructed based on the rapid artificial neural network (RANN) formalism. This approach generates precise force fields for various metals that have historically been difficult to describe at the atomic scale. These force fields can be utilized in molecular dynamics simulations to provide new physical insights. The RANN formalism, which is incorporated into a LAMMPS molecular dynamics …


Development Of Eam And Rf-Meam Interatomic Potential For Zirconium Diboride, Bikash Timalsina Aug 2021

Development Of Eam And Rf-Meam Interatomic Potential For Zirconium Diboride, Bikash Timalsina

MSU Graduate Theses

Embedded Atom Method (EAM) and Modified-EAM (MEAM) interatomic potentials were developed for zirconium diboride (ZrB2). The EAM and “Reference Free” (RF) version of the Modified Embedded Atom Method (RFMEAM) potentials have been fitted by utilizing Density Functional Theory (DFT)-based datasets including lattice deformations and high-temperature ab-initio molecular dynamics (AIMD) simulation results. The occupancies of phonons for acoustic phonon modes from the density functional theory calculation shows that these modes of vibration, mostly due to heavier mass element (Zr), which occur below 8.711 THz, while a slight underestimation to that of DFT calculation predicted by EAM below 8.439 THz …


Equations Of State For Warm Dense Carbon From Quantum Espresso, Derek J. Schauss Jan 2021

Equations Of State For Warm Dense Carbon From Quantum Espresso, Derek J. Schauss

Theses and Dissertations

Warm dense plasma is the matter that exists, roughly, in the range of 10,000 to 10,000,000 Kelvin and has solid-like densities, typically between 0.1 and 10 grams per centimeter. Warm dense fluids like hydrogen, helium, and carbon are believed to make up the interiors of many planets, white dwarfs, and other stars in our universe. The existence of warm dense matter (WDM) on Earth, however, is very rare, as it can only be created with high-energy sources like a nuclear explosion. In such an event, theoretical and computational models that accurately predict the response of certain materials are thus very …


Static And Dynamical Properties Of Multiferroics, Sayed Omid Sayedaghaee Dec 2020

Static And Dynamical Properties Of Multiferroics, Sayed Omid Sayedaghaee

Graduate Theses and Dissertations

Since the silicon industrial revolution in the 1950s, a lot of effort was dedicated to the research and development activities focused on material and solid-state sciences. As a result, several cutting-edge technologies are emerging including the applications of functional materials in the design and enhancement of novel devices such as sensors, highly capable data storage media, actuators, transducers, and several other types of electronic tools. In the last two decades, a class of functional materials known as multiferroics has captured significant attention because of providing a huge potential for new designs due to possessing multiple ferroic order parameters at the …


General-Purpose Coarse-Grained Toughened Thermoset Model For 44dds/Dgeba/Pes, Michael M. Henry, Stephen Thomas, Mone’T Alberts, Carla E. Estridge, Brittan Farmer, Olivia Mcnair, Eric Jankowski Nov 2020

General-Purpose Coarse-Grained Toughened Thermoset Model For 44dds/Dgeba/Pes, Michael M. Henry, Stephen Thomas, Mone’T Alberts, Carla E. Estridge, Brittan Farmer, Olivia Mcnair, Eric Jankowski

Materials Science and Engineering Faculty Publications and Presentations

The objective of this work is to predict the morphology and material properties of crosslinking polymers used in aerospace applications. We extend the open-source dybond plugin for HOOMD-Blue to implement a new coarse-grained model of reacting epoxy thermosets and use the 44DDS/DGEBA/PES system as a case study for calibration and validation. We parameterize the coarse-grained model from atomistic solubility data, calibrate reaction dynamics against experiments, and check for size-dependent artifacts. We validate model predictions by comparing glass transition temperatures measurements at arbitrary degree of cure, gel-points, and morphology predictions against experiments. We demonstrate for the first time in molecular simulations …


Computational Materials Science And Engineering: Model Development And Case Study, Yihan Xu Aug 2020

Computational Materials Science And Engineering: Model Development And Case Study, Yihan Xu

Theses and Dissertations

This study presents three tailored models for popular problems in energy storage and biological materials which demonstrate the application of computational materials science in material system development in these fields. The modeling methods can be extended for solving similar practical problems and applications.

In the first application, the thermo-mechanical stress concentrated region in planar sodium sulfur (NaS) cells with large diameter and different container materials has been estimated as well as the shear and normal stresses in these regions have been quantified using finite-element analysis (FEA) computation technique. It is demonstrated that the primary failure mechanism in the planar NaS …


Graphene/Oxide Interactions With Polymer Networks Modeled Using Molecular Dynamics, Matthew Alan Reil Jan 2020

Graphene/Oxide Interactions With Polymer Networks Modeled Using Molecular Dynamics, Matthew Alan Reil

Electronic Theses and Dissertations

Due to its unique physical properties, graphene has shown great promise as an additive to Polymer Matrix Composites (PMCs) for material property enhancement. Achieving homogeneous dispersion of the graphene platelets within a polymeric network is critical to realizing these enhancements. Research has shown that achieving homogeneous dispersion of graphene platelets within PMCs is challenging as graphene is immiscible with most polymeric networks. This work used Molecular Dynamics (MD) simulations to demonstrate dispersion of graphene platelets within PMCs is inhibited by molecular surface charge potentials. Further simulations were conducted to demonstrate functionalized forms of graphene, specifically graphene oxide, have altered surface …


Perspective On Coarse-Graining, Cognitive Load, And Materials Simulation, Eric Jankowski, Nealee Ellyson, Jenny W. Fothergill, Michael M. Henry, Mitchell H. Leibowitz, Evan D. Miller, Mone't Alberts, Jamie D. Guevara, Chris D. Jones, Mia Klopfenstein, Kendra K. Noneman, Rachel Singleton, Matthew L. Jones Jan 2020

Perspective On Coarse-Graining, Cognitive Load, And Materials Simulation, Eric Jankowski, Nealee Ellyson, Jenny W. Fothergill, Michael M. Henry, Mitchell H. Leibowitz, Evan D. Miller, Mone't Alberts, Jamie D. Guevara, Chris D. Jones, Mia Klopfenstein, Kendra K. Noneman, Rachel Singleton, Matthew L. Jones

Materials Science and Engineering Faculty Publications and Presentations

The predictive capabilities of computational materials science today derive from overlapping advances in simulation tools, modeling techniques, and best practices. We outline this ecosystem of molecular simulations by explaining how important contributions in each of these areas have fed into each other. The combined output of these tools, techniques, and practices is the ability for researchers to advance understanding by efficiently combining simple models with powerful software. As specific examples, we show how the prediction of organic photovoltaic morphologies have improved by orders of magnitude over the last decade, and how the processing of reacting epoxy thermosets can now be …


Study Of Amorphous Boron Carbide And Hydrogenated Boron Carbide Materials Using Molecular Dynamics And Hybrid Reverse Monte Carlo, Rajan Khadka Dec 2019

Study Of Amorphous Boron Carbide And Hydrogenated Boron Carbide Materials Using Molecular Dynamics And Hybrid Reverse Monte Carlo, Rajan Khadka

MSU Graduate Theses

We present a computational study of amorphous boron carbide (a-BxC) models using Molecular Dynamics (MD) studied with Stillinger-Weber (SW) and ReaxFF potential. The atomic structure factor (S(Q)), radial distribution function (RDF) and bond lengths comparison with other experimental and ab initio models shows that a random arrangement of icosahedra (B12, B11C) interconnected by chains (CCC, CBC) are present in a-BxC. Afterward, Hybrid Reverse Monte Carlo (HRMC) technique is used to recreate a-BxC structures. The existing SW potential parameters of Boron are optimized for the α-rhombohedral (Icosahedral B12 …


Molecular Dynamics Simulations Of Interaction Of Dna Nucleotides And Lignin Oligomers With Small Molecules And Interfaces, Xinjie Tong Nov 2019

Molecular Dynamics Simulations Of Interaction Of Dna Nucleotides And Lignin Oligomers With Small Molecules And Interfaces, Xinjie Tong

LSU Doctoral Dissertations

Molecular dynamics (MD) simulations of interaction of DNA nucleotides with self-assembled monolayers (SAMs) provide valuable information that is critical to the development of a new DNA sequencing technique. We investigated the interactions and transport characteristics of mononucleotides moving through nanoslits with SAMs-covered surfaces. Our simulations focused on nanoslits in which the walls were composed of three different types of SAMs: methylformyl terminated, methyl terminated, and phenoxy terminated. The results demonstrated that the phenoxy terminated surfaces have the shortest required nanoslits length for nucleotides separation.

Using MD simulations, we also investigated the interaction of mono-lignin and oligo-lignols with lipid bilayers and …


Combined Molecular Dynamics And Phase Field Simulation Of Crystal Melt Interfacial Properties And Microstructure Evolution During Rapid Solidification Of Ti-Ni Alloys, Sepideh Kavousi Nov 2019

Combined Molecular Dynamics And Phase Field Simulation Of Crystal Melt Interfacial Properties And Microstructure Evolution During Rapid Solidification Of Ti-Ni Alloys, Sepideh Kavousi

LSU Doctoral Dissertations

Phase field method has become a popular tool to investigate the microstructure evolution during the solidification. Quantitative predictions using this method is still limited, and in this dissertation, we try to study this problem from different perspectives.

Most of the phase field models consider the solid-liquid interface to be in local equilibrium. Solidification during some manufacturing processes like selective laser melting, and electron beam additive manufacturing is rapid and far from equilibrium which can result in supersaturated solid solutions, segregation-free crystals, or metastable phases. Before obtaining any conclusions from the phase field simulations, we must know the answer for “which …


Tools For Understanding Static Structure Factors And Their Application To Simulations Of Liquids, Travis Mackoy Jan 2019

Tools For Understanding Static Structure Factors And Their Application To Simulations Of Liquids, Travis Mackoy

Graduate Research Theses & Dissertations

Molecular dynamics (MD) simulations can be used to compute static structure factors (��(��)) and provide an interpretation of the underlying periodic atomic ordering. MD simulations complement experimentally measured ��(��) by allowing qualitative assignment of peaks to various ordering, such as cation-anion ordering in ionic liquids, via decomposition of ��(��) into partial ��(��). Here we present a method for classifying interatomic distances that allows for quantitative peak assignment and visualization of atoms that contribute most to each peak in calculated ��(��) for soft materials. The method is illustrated by investigating ��(��) for the ionic liquid 1-butyl-1-methyl-pyrrolidinium bis(trifluoromethylsulfonyl)imide (C4C1pyrrTFSI), which shows two …


Direct Polymer Grafting As A Method Of Maintaining The Mechanical Properties Of Cellulose Nanocrystals In The Presence Of Moisture, Mary Elizabeth Breen-Lyles Jan 2019

Direct Polymer Grafting As A Method Of Maintaining The Mechanical Properties Of Cellulose Nanocrystals In The Presence Of Moisture, Mary Elizabeth Breen-Lyles

Graduate Research Theses & Dissertations

Cellulose nanocrystals (CNCs) are a distinctive nanomaterial derived from cellulose, the most abundant natural polymer on Earth, and the primary reinforcing structural component of cellulose fibrils found within the plant cell wall. These nanocrystals exhibit mechanical properties comparable to synthetic aramid fibers but are advantageous as they are biodegradable, renewable, and can be produced sustainably as they are predominantly extracted from naturally occurring cellulosic materials. These qualities make it a sustainable, highly renewable and environmentally friendly material to be used in place of synthetic materials in a variety of applications. With their high surface area to volume ratio, low level …


Molecular Dynamics Study Of Creep Deformation In Nickel-Based Superalloy, Sabila Kader Pinky Jan 2019

Molecular Dynamics Study Of Creep Deformation In Nickel-Based Superalloy, Sabila Kader Pinky

MSU Graduate Theses

The present study employs molecular dynamics simulations of Ni-based superalloy to investigate the creep behavior under uniaxial compression test. Dislocation dynamics is analyzed for the nickel-based single crystal superalloy with the presence of void and with varying the distribution of gamma-prime phase The results show that multiple-void systems are more prone to yield than single-void systems and single-void systems are more prone to yield than the system without void. From the simulations, it has been determined that the creep mechanism in Ni/Ni3Al is subject to change on the applied stress depending on the distribution of gamma-prime phases change. Dislocation behavior …


Development Of Multicomponent Eam Potential For Ni-Based Superalloy, Muztoba Rabbani Jan 2019

Development Of Multicomponent Eam Potential For Ni-Based Superalloy, Muztoba Rabbani

MSU Graduate Theses

We initiated the development of multi-component EAM potentials for Aluminides and Carbides, key phases in Ni-based Superalloys. The goal is to utilize the MD simulation to understand the deformation dynamics that contribute to the formation of voids and creep initiation. For this purpose, we constructed the raw data from ab-initio (molecular dynamics) MD simulations fed into the potential development code and used Nickel as the base metal with the addition of a number of various elements including Aluminum, Chromium, Tungsten. We then developed the EAM potentials for the aluminide and carbide phases using the force-fitting code MEAMfit. Our generated potential …


Comparative Study Of Analytical Models Of The Gruneisen Parameter Of Metals As Function Of Pressure, Celia Garcia Amparan Jan 2019

Comparative Study Of Analytical Models Of The Gruneisen Parameter Of Metals As Function Of Pressure, Celia Garcia Amparan

Open Access Theses & Dissertations

Commonly used Gruneisen parameter (γ) models only hold accurate in limited regimes making them inapplicable for use over wide temperature-pressure conditions. The accuracy of these analytical models of γ and of the thermal expansion of solids are of particular interest as these are considered proxies for quantifying anharmonicity, which may be a significant contribution to the thermal pressure at high temperatures. This work reviews various definitions of γ and their relations to the equations of state and apply them to two simple metals: Tantalum (Ta) and Copper (Cu), for which a high body of experimental data exists. Classical Molecular Dynamics …


Optimization And Validation Of Efficient Models For Predicting Polythiophene Self-Assembly, Evan D. Miller, Matthew L. Jones, Michael M. Henry, Paul Chery, Kyle Miller, Eric Jankowski Dec 2018

Optimization And Validation Of Efficient Models For Predicting Polythiophene Self-Assembly, Evan D. Miller, Matthew L. Jones, Michael M. Henry, Paul Chery, Kyle Miller, Eric Jankowski

Materials Science and Engineering Faculty Publications and Presentations

We develop an optimized force-field for poly(3-hexylthiophene) (P3HT) and demonstrate its utility for predicting thermodynamic self-assembly. In particular, we consider short oligomer chains, model electrostatics and solvent implicitly, and coarsely model solvent evaporation. We quantify the performance of our model to determine what the optimal system sizes are for exploring self-assembly at combinations of state variables. We perform molecular dynamics simulations to predict the self-assembly of P3HT at ~350 combinations of temperature and solvent quality. Our structural calculations predict that the highest degrees of order are obtained with good solvents just below the melting temperature. We find our model produces …


Metal Segregation During The Solidification Of Titanium-Aluminum Alloys For 3d Printing Applications, Jwala Parajuli Nov 2018

Metal Segregation During The Solidification Of Titanium-Aluminum Alloys For 3d Printing Applications, Jwala Parajuli

Master's Theses

Titanium-Aluminum alloys are one of the widely used alloys in multiple engineering applications. They are highly preferred in Selective Laser Melting (SLM) processes due to their low density, high melting temperature, and good strength. Segregation occurs during the solidification of most alloys and produces a non-uniform distribution of atoms. In SLM, segregation may depict the type of adhesion between the two deposited interfacial layers and the strength between the interphase between an already solidified layer and a new one, and overall, the quality of the printed part. In order to avoid segregation, the understanding of the segregation behavior at atomistic …


Computational Study On The Cu-Rich Side Of Aluminum-Copper Phase Diagram, Khaled Ahmed Hirmas Aug 2018

Computational Study On The Cu-Rich Side Of Aluminum-Copper Phase Diagram, Khaled Ahmed Hirmas

Material Science and Engineering Dissertations

Cu-rich side of Al-Cu phase diagram has not been studied extensively as the Al-rich side. It is well established that a one-phase (a phase) exists at 300oC between the 82% Cu and pure Cu, and at the eutectic temperature (1032oC) between 86% Cu and pure Cu, a phase, when quenched from above 600oC and subjected to annealing below about 300oC, or deformation, show ordering effects in resistivity, heat capacity, diffuse X-ray, microstructure, and in mechanical properties. This has been studied to determine whether these effects are due to short-range or long-range ordered domain [1]. The present computational study is to …


Understanding Homogeneous Nucleation In Solidification Of Aluminum By Molecular Dynamics Simulations, A. Mahata, Mohsen Asle Zaeem, M. I. Baskes Mar 2018

Understanding Homogeneous Nucleation In Solidification Of Aluminum By Molecular Dynamics Simulations, A. Mahata, Mohsen Asle Zaeem, M. I. Baskes

Materials Science and Engineering Faculty Research & Creative Works

Homogeneous nucleation from aluminum (Al) melt was investigated by million-atom molecular dynamics simulations utilizing the second nearest neighbor modified embedded atom method potentials. The natural spontaneous homogenous nucleation from the Al melt was produced without any influence of pressure, free surface effects and impurities. Initially isothermal crystal nucleation from undercooled melt was studied at different constant temperatures, and later superheated Al melt was quenched with different cooling rates. The crystal structure of nuclei, critical nucleus size, critical temperature for homogenous nucleation, induction time, and nucleation rate were determined. The quenching simulations clearly revealed three temperature regimes: sub-critical nucleation, super-critical nucleation, …