Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 64

Full-Text Articles in Engineering

Developing High-Performance 2d Heterostructured Electrocatalysts And Photocatalysts For Hydrogen Production And Utilizationsts And Photocatalysts For Hydrogen Production And Utilization, Xiaohan Ma Dec 2023

Developing High-Performance 2d Heterostructured Electrocatalysts And Photocatalysts For Hydrogen Production And Utilizationsts And Photocatalysts For Hydrogen Production And Utilization, Xiaohan Ma

All Dissertations

H2 is a pivotal chemical in modern society, not only as a clean energy carrier but also as a versatile chemical reactant. However, traditional hydrogen production and utilization heavily rely on thermocatalysis, which is highly energy-intensive and can result in heavy carbon emission and severe environmental problems. Photocatalysis and electrocatalysis are greener alternatives to thermocatalysis that can capitalize on the renewable sunlight and electricity and thus dramatically reduce energy requirements. However, heterogeneous electro/photocatalysts are still far from application to hydrogen economy due to the lack of design principles that can lead to sufficient efficiency. To address this challenge, the …


Cu/Bnx Catalysts For Electrocatalytic Reduction Of Nitrogen And Nitrate Waste, Siming Huo May 2023

Cu/Bnx Catalysts For Electrocatalytic Reduction Of Nitrogen And Nitrate Waste, Siming Huo

Dissertations

Ammonia (NH3) is one of the most important chemicals to the whole human society. The invention of the Haber-Bosch process enabled the industrial production of NH3. However, owing to the high capital costs of the centralized plant and the equipment and the negative environmental impact, it is no longer suitable for today's needs of human development. As a result, there is an urgent need to investigate sustainable approaches for ammonia production. Among those reported studies, nitrogen reduction (NRR) and nitrate reduction reaction (NO3RR) are considered applicable in the future. However, after decades of studying …


A Self-Supported Ru-Cu3P Catalyst Toward Alkaline Hydrogen Evolution, Zi-Xuan Wan, Chao-Hui Wang, Xiong-Wu Kang Oct 2022

A Self-Supported Ru-Cu3P Catalyst Toward Alkaline Hydrogen Evolution, Zi-Xuan Wan, Chao-Hui Wang, Xiong-Wu Kang

Journal of Electrochemistry

Transition metal phosphide (TMP) is a kind of effective catalysts toward hydrogen evolution reaction (HER) in alkaline electrolytes. However, the performance of TMP catalysts is strongly limited by water splitting. In this work, we developed a method to prepare a copper foam (CF) supported Ru-doped Cu3P catalyst (Ru-Cu3P/CF) by a consecutive growth of Cu(OH)2 nanoarrays, soaking in RuCl3 solution and phosphorization. A large surface area was obtained by the self-supported catalysts with the appropriative Ru doping. As an excellent HER catalyst, it exhibited a low overpotential of 95.6 mV at a current density of …


Perovskite-Type Water Oxidation Electrocatalysts, Xiao Liang, Ke-Xin Zhang, Yu-Cheng Shen, Ke Sun, Lei Shi, Hui Chen, Ke-Yan Zheng, Xiao-Xin Zou Sep 2022

Perovskite-Type Water Oxidation Electrocatalysts, Xiao Liang, Ke-Xin Zhang, Yu-Cheng Shen, Ke Sun, Lei Shi, Hui Chen, Ke-Yan Zheng, Xiao-Xin Zou

Journal of Electrochemistry

The development of energy conversion/storage technologies can achieve the reliable and stable renewable energy supply, and bring us a sustainable future. As the core half-reaction of many energy-related systems, water oxidation is the bottleneck due to its sluggish kinetics of the four-concerted proton-electron transfer (CPET) process. This necessitates the exploitation of low cost, highly active and stable water oxidation electrocatalysts. Perovskite-type oxides possess diverse crystal structures, flexible compositions and unique electronic properties, enabling them ideal material platform for the optimization of catalytic performance. In this review, we provide a comprehensive summary for the crystal structures, electronic structures and synthetic methods …


Preparation And Properties Of Gcp-Supported Palladium Particles Composite Towards Electrochemical Ammonia Synthesis, Ying-Chao Wang, Zi-Zai Ma, Yi-Fan Wu, Xiao-Guang Wang May 2022

Preparation And Properties Of Gcp-Supported Palladium Particles Composite Towards Electrochemical Ammonia Synthesis, Ying-Chao Wang, Zi-Zai Ma, Yi-Fan Wu, Xiao-Guang Wang

Journal of Electrochemistry

Ammonia (NH3) plays an essential role in agriculture and modern industries. Electrochemical fixation of nitrogen (N2) to ammonia (NRR) under ambient conditions with renewable electricity is a promising strategy to replace the industrial Haber-Bosch method. However, it usually suffers from extremely poor ammonia yield and low Faraday efficiency due to the poor electrocatalysts. Therefore, intensive studies have been devoted to developing efficient NRR catalysts till now. Among them, palladium (Pd) can capture protons in the aqueous phase to form stable α-PdH, which balances the competitive adsorption between nitrogen and protons as well as reduces the …


Structural, Charge Transport, Gas Sensing, Magnetic, Pseudocapacitive, And Electrocatalytic Properties Of Perovskite Oxides., Surendra Bahadur Karki May 2022

Structural, Charge Transport, Gas Sensing, Magnetic, Pseudocapacitive, And Electrocatalytic Properties Of Perovskite Oxides., Surendra Bahadur Karki

Electronic Theses and Dissertations

Perovskites are functional materials with the general formula ABO3 (A = alkali, alkaline earth or lanthanoid cations and B = transition metal or main group cations). These materials are marked by a variety of crystal structures and interesting properties such as colossal magnetoresistance, ferroelectricity, multiferroicity, superconductivity, pseudocapacitance, gas sensing, charge transport, and electrocatalytic properties. The formula of perovskite can be written as AA’BB’O6, when there is ordering between two cations over A and B-sites. Such compounds are called double perovskite oxides. Some amount of oxygen could be lost from crystal structure without decomposition of the phase. Such …


Advances Of Phosphide Promoter Assisted Pt Based Catalyst For Electrooxidation Of Methanol, Meng Li, Li-Gang Feng Jan 2022

Advances Of Phosphide Promoter Assisted Pt Based Catalyst For Electrooxidation Of Methanol, Meng Li, Li-Gang Feng

Journal of Electrochemistry

Transition metal phosphide (TMP), as an ideal catalytic promoter in methanol fuel oxidation, has received increased attention because of its multifunctional active sites, tunable structure and composition, as well as unique physical and chemical properties and efficient multi-composition synergistic effect. Some advances have been made for this catalyst system recently. In the current review, the research progresses of transition metal phosphides (TMPs) in the assisted electrooxidation of methanol including the catalysts fabrication and their performance evaluation for methanol oxidation are reviewed. The promotion effect of TMPs has been firstly presented and the catalyst systems based on the different metal centers …


Synthesis And Electrochemical Study Of Cuau Nanodendrites For Co2 Reduction, Siltamaki Dylan, Chen Shuai, Rahmati Farnood, Lipkowski Jacek, Chen Ai-Cheng Jun 2021

Synthesis And Electrochemical Study Of Cuau Nanodendrites For Co2 Reduction, Siltamaki Dylan, Chen Shuai, Rahmati Farnood, Lipkowski Jacek, Chen Ai-Cheng

Journal of Electrochemistry

The conversion of carbon dioxide (CO2) to carbon monoxide (CO) and other value-added products is an interesting approach for carbon-containing fuel synthesis using renewable and clean energy. The electrochemical reduction of CO2 is one of the promising strategies for the storage of intermittent renewable energy resources. The development of electrocatalysts with high activity and stability is vital in the electrochemical CO2 reduction process. In this study, copper and gold alloyed (CuAu) electrodes with nanodendritic structures were synthesized using a facile electrodeposition method. The CuAu nanodendrites with the atomic ratio of Cu to Au being approximately 1:1 …


Preparation Of Co1-XS-Mns@Cnts/Cnfs For Electrocatalytic Oxygen Reduction Reaction, Fang-Yan Liu, Qian Zhang, Yue-Kun Li, Feng Huang, Meng-Ye Wang Jun 2021

Preparation Of Co1-XS-Mns@Cnts/Cnfs For Electrocatalytic Oxygen Reduction Reaction, Fang-Yan Liu, Qian Zhang, Yue-Kun Li, Feng Huang, Meng-Ye Wang

Journal of Electrochemistry

As an important cathode reaction in fuel cells and metal-air batteries, oxygen reduction reaction (ORR) is a complex reaction of slow kinetics, which severely limits performances of fuel cells and metal-air batteries. Therefore, it is of key importance to find an efficient and stable electrocatalyst to promote ORR. Carbon-based materials, which possess high conductivity, good stability and large specific surface area, are usually used in electrocatalytic ORR. However, pure carbon-based materials exhibit low efficiency. Coupling carbon-based materials with manganese (Mn) and cobalt (Co) transition metals containing 3d orbitals is an effective way to improve electrocatalytic performance. Herein, carbon nanofibers containing …


Application Of Atomically Precise Metal Nanoclusters In Electrocatalysis, Zhi-Hua Zhuang, Wei Chen Apr 2021

Application Of Atomically Precise Metal Nanoclusters In Electrocatalysis, Zhi-Hua Zhuang, Wei Chen

Journal of Electrochemistry

Metal nanoclusters (M NCs) consist of only several to a few hundred of metal atoms and possess core sizes less than 2 nm. Owing to the quantum size effect, the electronic states of M NCs evolve to discrete levels similar to the molecule energy gaps, other than a continuous density of states to produce plasmon characteristic of bulk metal nanoparticles (M NPs). In comparison with the conventional M NPs, M NCs exhibit dramatically unique electronic and optical properties, such as molecule-like energy gaps, strong photoluminescence and high catalytic properties, which make them promising for potential application in numerous fields, such …


Preparation Of Pdcoir Tetrahedron Nanocatalysts And Its Performance Toward Ethanol Oxidation Reaction, Zhi-Yuan Yu, Rui Huang, Jie Liu, Guang Li, Qian-Tong Song, Shi-Gang Sun Feb 2021

Preparation Of Pdcoir Tetrahedron Nanocatalysts And Its Performance Toward Ethanol Oxidation Reaction, Zhi-Yuan Yu, Rui Huang, Jie Liu, Guang Li, Qian-Tong Song, Shi-Gang Sun

Journal of Electrochemistry

As a new energy conversion device, direct ethanol fuel cells (DEFCs) are widely concerned because of their remarkable advantages such as high theoretical energy density and wide fuel sources. However, the rapid development of DEFCs has been severely impeded due to the sluggish kinetic process and toxic intermediates especially in their anodic reactions. Palladium (Pd)-based materials are considered to be excellent anode catalysts for DEFCs, especially under alkaline conditions. And further improving their performance is an important direction to promote the development of DEFCs. Surface structure and composition are the key factors affecting the performance of catalysts which can be …


Recent Progress On Enhancing Effect Of Nanosized Metals For Electrochemical Co2 Reduction, Yu-Ning Zhang, Dong-Fang Niu, Shuo-Zhen Hu, Xin-Sheng Zhang Aug 2020

Recent Progress On Enhancing Effect Of Nanosized Metals For Electrochemical Co2 Reduction, Yu-Ning Zhang, Dong-Fang Niu, Shuo-Zhen Hu, Xin-Sheng Zhang

Journal of Electrochemistry

The electrochemical conversion of CO2 to chemical raw material for further utilization shows promising future to alleviate global warming and realize carbon cycle in nature, which is of great significance to the green chemistry and sustainable development. This review briefly introduces the advantages of CO2 electrochemical reduction (CO2ER) and its basic reaction principles, and summarizes the recent progress in a series of activity enhancement strategies based on nanosized metal catalysts. The influences of alloy effect, interface engineering, synergistic effect, surface defect engineering and support effect on the catalytic performance of nanosized metals for CO2ER …


Electrochemical Carbon Dioxide Reduction In Flow Cells, Jia Fan, Na Han, Yan-Guang Li Aug 2020

Electrochemical Carbon Dioxide Reduction In Flow Cells, Jia Fan, Na Han, Yan-Guang Li

Journal of Electrochemistry

Electrochemical carbon dioxide reduction (CO2RR) is an appealing approach to convert atmospheric CO2 to value-added fuels and industrial chemicals, and may play an important role during the transition to a carbon-neutral economy. In order to make this technology commercially viable, it is essential to pursue CO2RR in flow reactors instead of conventional H-type reactors, and to combine electrocatalyst development with system engineering. In this review, we overview the cell configurations and performance advantages of the two types of flow reactors, analyze their shortcomings, and discuss the effects of their different components including gas diffusion electrode …


Electrolyte Tailoring For Electrocatalytic Reduction Of Stable Molecules, Jin-Han Li, Fang-Yi Cheng Aug 2020

Electrolyte Tailoring For Electrocatalytic Reduction Of Stable Molecules, Jin-Han Li, Fang-Yi Cheng

Journal of Electrochemistry

Reduction of stable molecules such as CO2 and N2 is important process in electrochemical energy conversion and storage technologies for electrofuels production. However, for the inert nature of CO2/N2 molecule and competitive proton reduction in conventional aqueous electrolytes, selective electrochemical carbon/nitrogen fixation suffers from high overpotential, low reaction rate and low selectivity. While addressing these issues has witnessed substantial advances in electrocatalysts, much less attention has been placed on the electrolytes, which play an important role in regulating the local environment and thus the performance of catalysts under operating conditions. Rational design of electrolytes has …


Development Of Software Tools And Experimental In Situ Electron Spin Resonance For Characterizing The Magnetic And Electrocatalytic Properties Of Transition Metal Chalcogenide Crystals, Jose Armando Delgado Jan 2020

Development Of Software Tools And Experimental In Situ Electron Spin Resonance For Characterizing The Magnetic And Electrocatalytic Properties Of Transition Metal Chalcogenide Crystals, Jose Armando Delgado

Open Access Theses & Dissertations

Studying the magnetic properties and crystal defects of transition metal chalcogenide crystals is of paramount importance for utilizing them for next generation spintronics devices and hydrogen evolution reaction catalysts. Hydrothermally grown transition metal chalcogenide nanocrystals (MoS2, Ru2S3, Rh2S3, Co2S8) were chosen as catalysts for the hydrogen evolution reaction due to their low dimensionality and previous utilization as catalysts for hydrodesulfurization. The relationship between crystal defect sites and catalytic activity must be discerned to maximize the efficiency of hydrogen production during the hydrogen evolution reaction. ESR spectroscopy was utilized as a spin sensitive technique to study the defects and local changes …


Advanced Electrodes And Electrolytes For Long-Lived And High-Performance Lithium-Sulfur Batteries, Deepesh Gopalakrishnan Jan 2020

Advanced Electrodes And Electrolytes For Long-Lived And High-Performance Lithium-Sulfur Batteries, Deepesh Gopalakrishnan

Wayne State University Dissertations

ABSTRACT

ADVANCED ELECTRODES AND ELECTROLYTES FOR LONG-LIVED AND HIGH-PERFORMANCE LITHIUM-SULFUR BATTERIES

by

DEEPESH GOPALAKRISHNAN

August 2020

Advisor: Dr. Leela Mohana Reddy Arava

Major: Mechanical Engineering

Degree: Doctor of Philosophy

Lithium – Sulfur (Li-S) batteries have received much attention and considered as a promising candidate for next generation energy storage devices because of their high theoretical energy density (≈2600 Wh kg‒1) and environmental friendliness. However, the uncontrollable growth of lithium dendrites in the lithium metal anode and the fatal effect of polysulfide shuttle hinder their practical applications. The formation of dendrites during repeated Li plating/stripping processes results in: reduced Li availability …


Comprehensively Improved Electrochemical Performance Of Lithium-Sulfur Batteries By “Chemical Anchors” And Lithium Anode Modification, Zhipeng Zeng Jan 2020

Comprehensively Improved Electrochemical Performance Of Lithium-Sulfur Batteries By “Chemical Anchors” And Lithium Anode Modification, Zhipeng Zeng

Graduate Theses, Dissertations, and Problem Reports

Lithium-sulfur battery is considered to be one of the most promising contenders for the next generation high-energy storages due to their high theoretical energy density (~2600 W h kg-1). However, a series of issues, especially for the dissolution of lithium polysulfides (LiPSs) with their “shuttle effect” and dendrite formation on the lithium anode, greatly limit their widely commercial applications. Starting from a brief overview of conventional methods to solve these problems, the achievements spotlighted in this research work mainly focus on the structure design of cathode materials by employing “chemical anchors” to effectively suppress the diffusion of LiPSs, …


Nickel Selenide Derived From [Ni(En)3](Seo3) Complex For Efficient Electrocatalytic Overall Water Splitting, Dan-Dan Chen, Xue-Qing Gao, Hong-Fei Liu, Wei Zhang, Rui Cao Oct 2019

Nickel Selenide Derived From [Ni(En)3](Seo3) Complex For Efficient Electrocatalytic Overall Water Splitting, Dan-Dan Chen, Xue-Qing Gao, Hong-Fei Liu, Wei Zhang, Rui Cao

Journal of Electrochemistry

Electrocatalytic water splitting is considered as a promising technology for renewable energy. The development of efficient, stable, cost-effective, and bifunctional catalysts for both water reduction and oxidation has continued to face significant challenges. Herein, we report a robust and highly active nickel selenide (NiSe) spheres grown on carbon cloth (CC) by electrodeposition from a nickel selenite complex which is a single source containing both Ni and Se. A combination of two chemicals containing, separately, Ni and Se is used in traditional preparations of metal selenides, causing possible problems in the uniformity of the products. The as-prepared NiSe-EA/CC electrode exhibited electrocatalytic …


Recent Progress In Copper-Based Catalysts For Electrochemical Co2 Reduction, Wen Lei, Wei-Ping Xiao, De-Li Wang Aug 2019

Recent Progress In Copper-Based Catalysts For Electrochemical Co2 Reduction, Wen Lei, Wei-Ping Xiao, De-Li Wang

Journal of Electrochemistry

As the situation of energy crisis and environmental pollution become more and more serious, the electrochemical reduction of carbon dioxide (CO2) has attracted lots of attention because of its multiple meanings such as environment, resources and economic benefits. In this paper, the state of the art electrochemical reduction of CO2 in aqueous solution is reviewed, and the latest research progress in Cu-based catalysts with different structures and morphologies is summarized. In the end, the application prospects, opportunities and challenges of Cu-based materials are briefly presented to provide an outlook for future research directions.


Preparations And Electrocatalytic Properties Of Cu-Bipy-Btc-Derived Carbon-Based Catalyst For Oxygen Reduction Reaction, Li-Hua Zhang, Jun-Feng Chen, Wan-Tang Huang, Yong-You Hu, Jian-Hua Cheng, Yuan-Cai Chen Aug 2019

Preparations And Electrocatalytic Properties Of Cu-Bipy-Btc-Derived Carbon-Based Catalyst For Oxygen Reduction Reaction, Li-Hua Zhang, Jun-Feng Chen, Wan-Tang Huang, Yong-You Hu, Jian-Hua Cheng, Yuan-Cai Chen

Journal of Electrochemistry

Efficient and low-cost oxygen reduction reaction (ORR) electrocatalyst plays a key role for fuel cells. In this paper, ORR active metal organic framework (MOF: Cu-bipy-BTC, bipy = 2,2?-bipyridine, BTC = 1,3,5-tricarboxylate) was prepared using hydrothermal method, and then carbon-based material MOF-800 was obtained from pyrolyzing Cu-bipy-BTC at 800 °C. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), nitrogen sorption isotherm and X-ray photolectron spectroscopy (XPS) were used to characterize the morphologies and structures of the catalysts. Linear sweep voltammetry (LSV) and current-time curve (i-t) were adopted to evaluate the electrocatalytic properties of the catalysts. …


Recent Advances In Bismuth-Based Co2 Reduction Electrocatalysts, Rui Zhou, Na Han, Yan-Guang Li Aug 2019

Recent Advances In Bismuth-Based Co2 Reduction Electrocatalysts, Rui Zhou, Na Han, Yan-Guang Li

Journal of Electrochemistry

Carbon dioxide (CO2) is an economical, secure and sustainable carbon resource around us. Its effective capture and recycling have been the focus of our entire society. Using the electrochemical method, CO2 can be reduced to different value-added chemicals or fuels. This approach not only would mitigate CO2 accumulation in the atmosphere, but also would help alleviate our dependence on fossil fuel. In this article, the basic principle and process of electrochemical CO2 reduction are first introduced. The recent development in bismuth-based catalysts for electrocatalytic CO2 reduction is reviewed with an emphasis on their preparation, …


Statuses, Challenges And Strategies In The Development Of Low-Temperature Carbon Dioxide Electroreduction Technology, Xu-Rui Zhang, Xiao-Lin Shao, Jin Yi, Yu-Yu Liu, Jiu-Jun Zhang Aug 2019

Statuses, Challenges And Strategies In The Development Of Low-Temperature Carbon Dioxide Electroreduction Technology, Xu-Rui Zhang, Xiao-Lin Shao, Jin Yi, Yu-Yu Liu, Jiu-Jun Zhang

Journal of Electrochemistry

Low-temperature carbon dioxide (CO2) electrochemical reduction technology is a hotspot for research and development in recent years as a way to reduce the negative impact of CO2 on the environment and to generate energy storage through converting electricity to low-carbon fuels. Although basic research on catalyst activity, product selectivity, and reaction mechanism has been widely reported, the design and practicality of catalytic stability and corresponding electrochemical reactor systems have not been given sufficient attention and systematic development. In this paper, two important factors affecting the development of CO2 electrochemical reduction technology in low temperature aqueous solution …


Regulation Of Copper Surface Via Redox Reactions For Enhancing Carbon Dioxide Electroreduction, Bao-Hua Hang, Jin-Tao Zhang Aug 2019

Regulation Of Copper Surface Via Redox Reactions For Enhancing Carbon Dioxide Electroreduction, Bao-Hua Hang, Jin-Tao Zhang

Journal of Electrochemistry

A large-scale application of fossil fuels has led to excessive emission of carbon dioxide (CO2), resulting in serious environmental issues. A promising path to reducing CO2 emissions is recycling CO2 into valuable chemicals and fuels through an electrochemical process. Herein, the redox reactions between copper (Cu) and ferric chloride (FeCl3) have been utilized to regulate the Cu surface composition and structure, aimed to improve the electrocatalytic activity toward CO2 reduction. Typically, a series of samples (named Cu-1h, Cu-2h, Cu-3h and Cu-4h) were prepared via the redox reactions for various time from 1 to …


Electrocatalytic Nanomaterials For Reduction Of Hydrogen Peroxide As Potential Radioprotectors, Rui-Hong Jia, Jin-Xuan Zhang, Xiao-Dong Zhang, Mei-Xian Li Jun 2019

Electrocatalytic Nanomaterials For Reduction Of Hydrogen Peroxide As Potential Radioprotectors, Rui-Hong Jia, Jin-Xuan Zhang, Xiao-Dong Zhang, Mei-Xian Li

Journal of Electrochemistry

Nanomaterials have shown many potential application prospects in the biomedical field, such as medical imaging, drug delivery and biosensing due to their unique physical and chemical properties. In this review we focus on nanomaterials that have shown not only abilities of radiation protection, but also good electrocatalytic activities toward reduction reactions of hydrogen peroxide and oxygen. We discuss the abilities of radiation protection of these nanomaterials that are ascribed to their enzyme-like activities because their catalytic properties provide an effective pathway for scavenging free radicals in vivo via rapid reactions with reactive oxygen species. We also provide insights into electrocatalytic …


Preparation And Electrocatalytic Oxygen Reduction Performance Of Self-Doped Sludge-Derived Carbon, Ya-Li Ye, Wei-Ming Feng, Ge Li, Zhen-Chao Lei, Chun-Hua Feng Apr 2019

Preparation And Electrocatalytic Oxygen Reduction Performance Of Self-Doped Sludge-Derived Carbon, Ya-Li Ye, Wei-Ming Feng, Ge Li, Zhen-Chao Lei, Chun-Hua Feng

Journal of Electrochemistry

The development of low-cost, high-performance cathode catalysts is critical for practical application of fuel cells. Here, the N, P-doped porous graphene-like carbon with outstanding oxygen reduction reaction (ORR) performance was synthesized by pyrolysis of surplus sludge, which functioned as a self-doped, self-activated, and self-templated precursor by acclimation with continuous feedings of phenol. The results show that the amounts of microorganisms were enriched after acclimation, with increasing contents of N, P, Fe, as well as C atoms. The increasing pyrolysis temperature resulted in the formation of an ordered graphitic structure, however, the excessively high temperature induced the drop in the amounts …


Recent Developments In Surface/Interface Modulation And Structure-Performance Relationship Of Cathode Catalysts For Li-Air Batteries, Rui Gao, Jun-Kai Wang, Zhong-Bo Hu, Xiang-Feng Liu Feb 2019

Recent Developments In Surface/Interface Modulation And Structure-Performance Relationship Of Cathode Catalysts For Li-Air Batteries, Rui Gao, Jun-Kai Wang, Zhong-Bo Hu, Xiang-Feng Liu

Journal of Electrochemistry

Lithium-air battery has been considered to be one of the most promising secondary battery systems because of its high energy density. However, the sluggish kinetics of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) on the cathode, and the high overpotential, poor cycle stability and low rate capacity have severely blocked the development and application of Li-air battery. One of the effective strategies to alleviate these issues is to develop cathode catalysts for Li-air batteries. The design and development of bifunctional cathode catalysts with high activity and efficiency on both ORR and OER is highly desired for Li-air …


Fundamental Insights On The Electrolysis Of Co2 Using Solid Oxide Electrolysis Cells, Juliana Silva Alves Carneiro Jan 2019

Fundamental Insights On The Electrolysis Of Co2 Using Solid Oxide Electrolysis Cells, Juliana Silva Alves Carneiro

Wayne State University Dissertations

The work reported in this thesis focused on providing a fundamental understanding, at the molecular level, required to guide the effective design of electrocatalysts towards a superior reaction kinetics on the electrode of solid oxide electrolysis cells SOECs devices (SOECs) during the CO2 electrolysis. High temperature SOECs are electrochemical energy conversion technologies, that have emerged as promising alternatives to mitigate environmental issues associated with combustion-based technologies, such as the rising atmospheric CO2 levels. The conversion of excess CO2 into high-energy molecules, such as CO can be efficiently achieved through the use of SOEC – which facilitates the electrochemical reduction of …


Palladium Adatoms On Gold Nanoparticles As Electrocatalysts For Ethanol Electro-Oxidation In Alkaline Solutions, Hui-Mei Chen, Shang-Qian Zhu, Jia-Le Huang, Min-Hua Shao Dec 2018

Palladium Adatoms On Gold Nanoparticles As Electrocatalysts For Ethanol Electro-Oxidation In Alkaline Solutions, Hui-Mei Chen, Shang-Qian Zhu, Jia-Le Huang, Min-Hua Shao

Journal of Electrochemistry

Palladium (Pd) is a good catalyst for ethanol electro-oxidation in alkaline solutions. The activity of Pd is further improved in this study by modifying the gold (Au) nanoparticles with Pd adatoms using a simple spontaneous deposition process. The Pd overlayer on the Au core (Au@Pd) is un-uniform with some Au atoms exposed to the electrolyte. The activity of Au@Pd/C toward ethanol oxidation reaction (EOR) is much higher than that of Pd/C in an alkaline solution. The peak current density of Au@Pd/C is 4.6 times higher than that of Pd/C with a 100 mV lower onset potential. The enhanced activity may …


Recent Advances In Non-Noble Metal Nanomaterials For Oxygen Evolution Electrocatalysis, Dan-Dan Zhao, Nan Zhang, Ling-Zheng Bu, Qi Shao, Xiao-Qing Huang Oct 2018

Recent Advances In Non-Noble Metal Nanomaterials For Oxygen Evolution Electrocatalysis, Dan-Dan Zhao, Nan Zhang, Ling-Zheng Bu, Qi Shao, Xiao-Qing Huang

Journal of Electrochemistry

Hydrogen is a kind of renewable energies with the merits of environmentally friendly, abundance and high weight energy density, which can replace the fossil energy. The electrolysis of water is regarded as the most effective way to generate hydrogen. Owing to the sluggish kinetics and large overpotential of the anode oxygen evolution reaction (OER), the efficiency of the cathode hydrogen evolution reaction is greatly limited. Therefore, it is highly desirable to explore efficient, stable and low cost electrocatalysts to reduce the overpotential of OER and improve the efficiency of hydrogen evolution. Based on the natural characteristics of non-noble metal catalysts …


Highly Crystalline Nickel Borate Nanorods As Oxygen Evolution Reaction Electrocatalysts, Xi Xu, Juan Liu, Hua-Zong Wu, Wen-Jie Jiang Aug 2018

Highly Crystalline Nickel Borate Nanorods As Oxygen Evolution Reaction Electrocatalysts, Xi Xu, Juan Liu, Hua-Zong Wu, Wen-Jie Jiang

Journal of Electrochemistry

Hydrogen energy, a kind of clean and renewable energy, is considered to be the solution to the problems of energy crisis and environmental deterioration. Electrochemical water splitting is an efficient and promising technology for the production of high-purity hydrogen. However, oxygen evolution reaction (OER) at the anode of water electrolyzer limits the efficiency of water splitting due to the high overpotential. Therefore, the challenges still remain for the exploration of highly active, stable and low-cost catalysts with superior activity for OER. Herein, nickel borate nanorods with high crystallinity were prepared via high-temperature calcination. The as-obtained nickel borate nanorods with 2 …