Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Gnygrens18.Pdf, Garrett Nygren Aug 2018

Gnygrens18.Pdf, Garrett Nygren

Garrett Nygren

The finite element method was used to evaluate microstructural strengthening and toughening effects in nanoparticulate reinforced polymer composites (nanocomposites) and in short aligned discontinuous fiber reinforced polymer composites. Nanoparticulate reinforcement is a well-known method of polymer toughening which can greatly expand the range of engineering applications for polymers. However, the mechanisms of nanoparticulate toughening, as well as complementary sub-micron fracture processes, are not well understood. Short, aligned, discontinuous carbon fiber reinforced thermoplastics show promise as a versatile, inexpensive material system with favorable manufacturability, but failure of the associated morphologies is also not yet well explored.
In nanocomposites, two microstructural effects …


Reprapable Recyclebot: Open Source 3-D Printable Extruder For Converting Plastic To 3-D Printing Filament, Aubrey Woern, Joseph Mccaslin, Adam Pringle, Joshua M. Pearce May 2018

Reprapable Recyclebot: Open Source 3-D Printable Extruder For Converting Plastic To 3-D Printing Filament, Aubrey Woern, Joseph Mccaslin, Adam Pringle, Joshua M. Pearce

Department of Materials Science and Engineering Publications

In order to assist researchers explore the full potential of distributed recycling of post-consumer polymer waste, this article describes a recyclebot, which is a waste plastic extruder capable of making commercial quality 3-D printing filament. The device design takes advantage of both the open source hardware methodology and the paradigm developed by the open source self-replicating rapid prototyper (RepRap) 3-D printer community. Specifically, this paper describes the design, fabrication and operation of a RepRapable Recyclebot, which refers to the Recyclebot’s ability to provide the filament needed to largely replicate the parts for the Recyclebot on any type of RepRap 3-D …


Detection Of Buried Non-Metallic (Plastic And Frp Composite) Pipes Using Gpr And Irt, Jonas Kavi Jan 2018

Detection Of Buried Non-Metallic (Plastic And Frp Composite) Pipes Using Gpr And Irt, Jonas Kavi

Graduate Theses, Dissertations, and Problem Reports

This research investigated alternative strategies for making buried non-metallic pipes (CFRP, GFRP, and PVC) easily locatable using Ground Penetrating Radar (GPR). Pipe diameters up to 12" and buried with up to 4 ft. of soil cover were investigated. The findings of this study will help address the detection problem of non-metallic pipelines and speed the adoption of composite pipes by the petroleum and natural gas industry. The research also investigated the possibility of locating buried pipes transporting hot fluids using Infrared Thermography (IRT).

Results from the study have shown that, using carbon fabric and aluminum tape overlay on non‑metallic pipes …


Effect Of Curing Rate On The Microstructure And Macroscopic Properties Of Epoxy Fiberglass Composites, Ammar Patel, Olesksandr Kravchenko, Ica Manas-Zloczower Jan 2018

Effect Of Curing Rate On The Microstructure And Macroscopic Properties Of Epoxy Fiberglass Composites, Ammar Patel, Olesksandr Kravchenko, Ica Manas-Zloczower

Mechanical & Aerospace Engineering Faculty Publications

Curing rates of an epoxy amine system were varied via different curing cycles, and glass-fiber epoxy composites were prepared using the same protocol, with the aim of investigating the correlation between microstructure and composite properties. It was found that the fast curing cycle resulted in a non-homogenous network, with a larger percentage of a softer phase. Homogenized composite properties, namely storage modulus and quasi-static intra-laminar shear strength, remained unaffected by the change in resin microstructure. However, fatigue tests revealed a significant reduction in fatigue life for composites cured at fast curing rates, while composites with curing cycles that allowed a …


High Temperature Polymer Composites Using Out-Of-Autoclave Processing, Sudharshan Anandan Jan 2018

High Temperature Polymer Composites Using Out-Of-Autoclave Processing, Sudharshan Anandan

Doctoral Dissertations

"High performance polymer composites possess high strength-to-weight ratio, corrosion resistance, and have design flexibility. Carbon/epoxy composites are commonly used aerospace materials. Bismaleimide based composites are used as a replacement for epoxy systems at higher service temperatures. Aerospace composites are usually manufactured, under high pressure, in an autoclave which requires high capital investments and operating costs. In contrast, out-of-autoclave manufacturing, specifically vacuum-bag-only prepreg process, is capable of producing low cost and high performance composites. In the current study, out-of-autoclave processing of high temperature carbon/bismaleimide composites was evaluated. The cure and process parameters were optimized. The properties of out-of-autoclave cured laminates compared …