Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

3D printing

Institution
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 63

Full-Text Articles in Engineering

Pisa Printing Microneedles With Controllable Aqueous Dissolution Kinetics, Aaron Priester, Jimmy Yeng, Yuwei Zhang, Krista Hilmas, Risheng Wang, Anthony J. Convertine Feb 2024

Pisa Printing Microneedles With Controllable Aqueous Dissolution Kinetics, Aaron Priester, Jimmy Yeng, Yuwei Zhang, Krista Hilmas, Risheng Wang, Anthony J. Convertine

Chemistry Faculty Research & Creative Works

This study focused on the development of high-resolution polymeric structures using polymer-induced self-assembly (PISA) printing with commercially available digital light-processing (DLP) printers. Significantly, soluble solids could be 3D-printed using this methodology with controllable aqueous dissolution rates. This was achieved using a highly branched macrochain transfer agent (macro-CTA) containing multiple covalently attached CTA groups. In this work, the use of acrylamide as the self-assembling monomer in isopropyl alcohol was explored with the addition of N-(butoxymethyl)acrylamide to modulate the aqueous dissolution kinetics. PISA-printed microneedles were observed to have feature sizes as small as 27 μm, which was close to the resolution limit …


Advancements And Challenges In Additively Manufactured Functionally Graded Materials: A Comprehensive Review, Suhas Alkunte, Ismail Fidan, Vivekanand Naikwadi, Shamil Gudavasov, Mohammad Alshaikh Ali, Mushfig Mahmudov, Seymur Hasanov, Muralimohan Cheepu Jan 2024

Advancements And Challenges In Additively Manufactured Functionally Graded Materials: A Comprehensive Review, Suhas Alkunte, Ismail Fidan, Vivekanand Naikwadi, Shamil Gudavasov, Mohammad Alshaikh Ali, Mushfig Mahmudov, Seymur Hasanov, Muralimohan Cheepu

Engineering Technology Faculty Publications

This paper thoroughly examines the advancements and challenges in the field of additively manufactured Functionally Graded Materials (FGMs). It delves into conceptual approaches for FGM design, various manufacturing techniques, and the materials employed in their fabrication using additive manufacturing (AM) technologies. This paper explores the applications of FGMs in diverse fields, including structural engineering, automotive, biomedical engineering, soft robotics, electronics, 4D printing, and metamaterials. Critical issues and challenges associated with FGMs are meticulously analyzed, addressing concerns related to production and performance. Moreover, this paper forecasts future trends in FGM development, highlighting potential impacts on diverse industries. The concluding section summarizes …


Analyzing The Effects Of Ultrafast Laser Processing On Mechanical Properties Of 3d-Printed Pla Parts, Darshan Pramodbhai Yadav Dec 2023

Analyzing The Effects Of Ultrafast Laser Processing On Mechanical Properties Of 3d-Printed Pla Parts, Darshan Pramodbhai Yadav

Theses and Dissertations

Recent advances in additive manufacturing technologies have already led to wide-scale adoption of 3D-printed parts in various industries. The expansion in choice of materials that can be processed, particularly using Fused Deposition Modeling (FDM), and the steady advancements in dimensional accuracy control have extended the range of applications far beyond rapid prototyping. However, additive manufacturing still has considerable limitations compared to traditional and subtractive manufacturing processes. This work addresses limitations associated with the as-deposited surface roughness of 3D-printed parts. The effects of roughness-induced stress concentrations were studied on ultimate tensile strength and fatigue life. The samples were manufactured using a …


Advancing Additive Manufacturing For Biomedical Applications: Antimicrobial And X-Ray Absorptive Composite Filaments For Fused Filament Fabrication, John M. Arnold Jr Dec 2023

Advancing Additive Manufacturing For Biomedical Applications: Antimicrobial And X-Ray Absorptive Composite Filaments For Fused Filament Fabrication, John M. Arnold Jr

University of New Orleans Theses and Dissertations

The objective of this research was to investigate the use of nano- and microparticle amendments for the creation of Poly-lactic Acid composite materials for use in biomedical applications using the Fused Filament Fabrication process of Additive Manufacturing. Composites were created with the goal of imparting the useful properties of antimicrobial activity and x-ray absorption to the material. In addition to testing the efficacy of the particle amendments in achieving the desired properties, the thermal and mechanical properties of the composite materials were tested to ensure that the composites would be compatible with the Fused Filament Fabrication process and would produce …


Evaluation Of Biomass As Bio-Additive In 3d Printing, Shuyang Zhang Aug 2023

Evaluation Of Biomass As Bio-Additive In 3d Printing, Shuyang Zhang

Doctoral Dissertations

The petrol-based polymer has been widely applied in current daily life. The end-of-life of polymeric products has drawn environmental concerns. One of the solutions to such issues is to use bio-renewable materials to replace or reduce the use of petrol-based materials. Lignocellulosic materials are one of the potential candidates. Along with the features of 3D printing and the unique properties of biomass, 3D-printed biomass-based materials could be promising in preparing sustainable alternatives.

In this dissertation, lignin and other biomass were applied to various 3D printing techniques for sustainable composites. Stereolithography (SLA) was first used, and the kraft softwood lignin was …


Exploring Methods For Recycling Filament Waste In 3d Printing, Max Rios Carballo May 2023

Exploring Methods For Recycling Filament Waste In 3d Printing, Max Rios Carballo

Publications and Research

The goal of the current study is to investigate cutting-edge techniques for recycling filament waste from 3D printing procedures. Appropriate waste management techniques are required to reduce this trash's harmful environmental consequences. The goal of the project is to look at new methods for recycling filament waste in order to minimize disposal and encourage reuse. To acquire data from pertinent papers and research, a thorough literature review methodology was used. The findings show that this issue may be resolved utilizing a variety of recycling techniques, including shredding, melting, and re-extrusion. The type of filament waste and the intended goal will …


Low-Cost Microstereolithography 3d Printing With Microfluidic Microsampling Applications, Lauren Twombly May 2023

Low-Cost Microstereolithography 3d Printing With Microfluidic Microsampling Applications, Lauren Twombly

Chemistry & Biochemistry Undergraduate Honors Theses

The growing field of stereolithography 3D printing has welcomed a new age ofmicrofluidic device fabrication techniques. When compared to previous planar fabrication techniques such as soft-lithography, stereolithography 3D printing offers highly automated procedures, reduced fabrication times, and greater complexity of device features. To date, the greatest tradeoff for 3D printing in microfluidic device fabrication is poorer resolution when compared to soft-lithography which can produce feature sizes on the nanometer scale. The poorer resolution of 3D printing limits the feasible size of features. While highly sophisticated 3D printers are capable of achieving sub 10 μm resolution, these instruments are incredibly expensive …


Engineered Material Systems For Mimicking Tissue And Disease, Margrethe Ruding May 2023

Engineered Material Systems For Mimicking Tissue And Disease, Margrethe Ruding

McKelvey School of Engineering Theses & Dissertations

This thesis comprises two studies involving design and application of soft material systems. The goal of the first study was to design, fabricate, and characterize hydrogel lattice structures with consistent, controllable, anisotropic mechanical properties. Lattices, based on four types of unit cells (cubic, diamond, vintile, and Weaire-Phelan), were printed using stereolithography (SLA) of polyethylene glycol diacrylate (PEGDA). In order to create structural anisotropy in the lattices, unit cell design files were scaled in one direction by a factor of two in each layer and then printed. The mechanical properties of the scaled lattices were measured in shear and compression and …


Fast-, Light-Cured Scintillating Plastic For 3d-Printing Applications, Brian G. Frandsen, Michael Febbraro, Thomas Ruland, Theodore W. Stephens, Paul A. Hausladen, Juan J. Manfredi, James E. Bevins Mar 2023

Fast-, Light-Cured Scintillating Plastic For 3d-Printing Applications, Brian G. Frandsen, Michael Febbraro, Thomas Ruland, Theodore W. Stephens, Paul A. Hausladen, Juan J. Manfredi, James E. Bevins

Faculty Publications

Additive manufacturing techniques enable a wide range of possibilities for novel radiation detectors spanning simple to highly complex geometries, multi-material composites, and metamaterials that are either impossible or cost prohibitive to produce using conventional methods. The present work identifies a set of promising formulations of photocurable scintillator resins capable of neutron-gamma pulse shape discrimination (PSD) to support the additive manufacturing of fast neutron detectors. The development of these resins utilizes a step-by-step, trial-and-error approach to identify different monomer and cross-linker combinations that meet the requirements for 3D printing followed by a 2-level factorial parameter study to optimize the radiation detection …


Additive Manufacturing Of Sic-Sialon Refractory With Excellent Properties By Direct Ink Writing, Ruoyu Chen, Saisai Li, Xinxin Jin, Haiming Wen Jan 2023

Additive Manufacturing Of Sic-Sialon Refractory With Excellent Properties By Direct Ink Writing, Ruoyu Chen, Saisai Li, Xinxin Jin, Haiming Wen

Materials Science and Engineering Faculty Research & Creative Works

Additive manufacturing of SiC-Sialon refractory with complex geometries was achieved using direct ink writing processes, followed by pressure less sintering under nitrogen. The effects of particle size of SiC powders, solid content of slurries and additives on the rheology, thixotropy and viscoelasticity of ceramic slurries were investigated. The optimal slurry with a high solid content was composed of 81 wt% SiC (3.5 µm+0.65 µm), Al2O3 and SiO2 powders, 0.2 wt% dispersant, and 2.8 wt% binder. Furthermore, the accuracy of the structure of specimens was improved via adjustment of the printing parameters, including nozzle size, extrusion pressure, and layer height. The …


Thermal Post-Processing Of 3d Printed Polypropylene Parts For Vacuum Systems, Pierce Mayville, Aliaksei L. Petsiuk, Joshua M. Pearce Sep 2022

Thermal Post-Processing Of 3d Printed Polypropylene Parts For Vacuum Systems, Pierce Mayville, Aliaksei L. Petsiuk, Joshua M. Pearce

Michigan Tech Publications

Access to vacuum systems is limited because of economic costs. A rapidly growing approach to reduce the costs of scientific equipment is to combine open-source hardware methods with digital distributed manufacturing with 3D printers. Although high-end 3D printers can manufacture vacuum components, again, the cost of access to tooling is economically prohibitive. Low-cost material extrusion 3D printing with plastic overcomes the cost issue, but two problems arise when attempting to use plastic in or as part of vacuum systems: the outgassing of polymers and their sealing. To overcome these challenges, this study explores the potential of using post-processing heat treatments …


Ultrafast Stiffening Of Concentrated Thermoresponsive Mineral Suspensions, Sharu Bhagavathi Kandy, Iman Mehdipour, Narayanan Neithalath, Aditya Kumar, Mathieu Bauchy, Edward Garboczi, Samanvaya Srivastava, Torben Gaedt, Gaurav Sant Sep 2022

Ultrafast Stiffening Of Concentrated Thermoresponsive Mineral Suspensions, Sharu Bhagavathi Kandy, Iman Mehdipour, Narayanan Neithalath, Aditya Kumar, Mathieu Bauchy, Edward Garboczi, Samanvaya Srivastava, Torben Gaedt, Gaurav Sant

Materials Science and Engineering Faculty Research & Creative Works

Extrusion-based 3D printing with rapidly hardening polymeric materials is capable of building almost any conceivable structure. However, concrete, one of the most widely used materials for large-scale structural components, is generally based on inorganic binder materials like Portland cement. Unlike polymeric materials, a lack of precise control of the extent and rate of solidification of cement-based suspensions is a major issue that affects the ability to 3D-print geometrically complex structures. Here, we demonstrate a novel method for controllable-rapid solidification of concentrated mineral suspensions that contain a polymer binder system based on epoxy and thiol precursors as well as one or …


Additive Manufacturing Of Sub-Micron Features And Mechanical Linkages, David K. Limberg Jun 2022

Additive Manufacturing Of Sub-Micron Features And Mechanical Linkages, David K. Limberg

Doctoral Dissertations

In recent years material constraints have become the limiting factor in several fields, including batteries, robotics, and medicine, and these needs have prompted the development of materials with programmable properties. To this end, much effort has been dedicated to designing metamaterials that have unprecedented optical, mechanical, and thermal properties, along with systems for additive manufacturing to build their complex structures with high precision and throughput. The field of additive manufacturing has proved to be a platform for innovation across many industries yet is still limited with regards to feature sizes, print rates, and diversity of materials. Mechanical devices like linkages …


Nondestructive Evaluation Of 3d Printed, Extruded, And Natural Polymer Structures Using Terahertz Spectroscopy And Imaging, Alexander T. Clark May 2022

Nondestructive Evaluation Of 3d Printed, Extruded, And Natural Polymer Structures Using Terahertz Spectroscopy And Imaging, Alexander T. Clark

Dissertations

Terahertz (THz) spectroscopy and imaging are considered for the nondestructive evaluation (NDE) of various three-dimensional (3D) printed, extruded, and natural polymer structures. THz radiation is the prime candidate for many NDE challenges due to the added benefits of safety, increased contrast and depth resolution, and optical characteristic visualization when compared to other techniques. THz imaging, using a wide bandwidth pulse-based system, can evaluate the external and internal structure of most nonconductive and nonpolar materials without any permanent effects. NDE images can be created based on THz pulse attributes or a material’s spectroscopic characteristics such as refractive index, attenuation coefficient, or …


Rational Design Of Flexible And Stretchable Electronics Based On 3d Printing, Yuanhang Yang Jan 2022

Rational Design Of Flexible And Stretchable Electronics Based On 3d Printing, Yuanhang Yang

Theses and Dissertations

Flexible and stretchable electronics have been considered as the key component for the next generation of flexible devices. There are many approaches to prepare the devices, such as dip coating, spin coating, Mayer bar coating, filtration and transfer, and printing, etc. The effectiveness of these methods has been proven, but some drawbacks cannot be ignored, such as lacking pattern control, labor consuming, requiring complex pretreatment, wasting conductive materials, etc.

In this investigation, we propose to adopt 3D printing technology to design flexible and stretchable electronics. The objective is to rationally design flexible and stretchable sensors, simplify the preparation process, form …


Recycled Printer Filament, Charlotte Hyland, Troy D. Molinar Jan 2022

Recycled Printer Filament, Charlotte Hyland, Troy D. Molinar

Williams Honors College, Honors Research Projects

The purpose of this research is to examine the effects of recycling PLA filament for 3D printing on its material properties. After examining these effects, PLA and carbon fiber additives were mixed with recycled PLA pellets in different ratios to attempt to regain material properties lost in the recycling process. To complete these findings, an experiment was design and executed.

The research found that tensile strength during multiple iterations of recycling remained mostly unaffected, however, the strain degraded exponentially. In the PLA additive study, high ratios of PLA additive were able to increase the strength and strain properties of the …


Application Of Sla 3d Printing For Polymers, Taylor Wilson Jan 2022

Application Of Sla 3d Printing For Polymers, Taylor Wilson

Williams Honors College, Honors Research Projects

Stereolithography is a type of 3D printing that allows liquid photopolymer resin to be cured into layers that make up a 3D object. Creation of such resins for these purposes can require a significant amount of time to test and develop, and commercial resins also require some amount of testing for printer settings before use. This paper reviews how stereolithography works, the materials used, and experimentation done to compare the resin properties to the determined curing times. Using several commercially available resins, varying base exposure and layer exposure times were used to determine the lowest possible curing time that gave …


Reducing Print Time While Minimizing Loss In Mechanical Properties In Consumer Fdm Parts, Long Le, Mitchel A. Rabsatt, Hamid Eisazadeh, Mona Torabizadeh Jan 2022

Reducing Print Time While Minimizing Loss In Mechanical Properties In Consumer Fdm Parts, Long Le, Mitchel A. Rabsatt, Hamid Eisazadeh, Mona Torabizadeh

Mechanical & Aerospace Engineering Faculty Publications

Fused deposition modeling (FDM), one of various additive manufacturing (AM) technologies, offers a useful and accessible tool for prototyping and manufacturing small volume functional parts. Polylactic acid (PLA) is among the commonly used materials for this process. This study explores the mechanical properties and print time of additively manufactured PLA with consideration to various process parameters. The objective of this study is to optimize the process parameters for the fastest print time possible while minimizing the loss in ultimate strength. Design of experiments (DOE) was employed using a split-plot design with five factors. Analysis of variance (ANOVA) was employed to …


Thermal And Mechanical Numerical Modeling Of Extrusion-Based 3d Printed Reinforced Polymers For Selecting Manufacturing Process Parameters, Sunil Bhandari Dec 2021

Thermal And Mechanical Numerical Modeling Of Extrusion-Based 3d Printed Reinforced Polymers For Selecting Manufacturing Process Parameters, Sunil Bhandari

Electronic Theses and Dissertations

Extrusion-based 3D printing of thermoplastic polymer composites manufactures parts that have nonhomogenous, orthotropic, and process-dependent macro-scale material properties. As a part of the dissertation, research works were carried out to: • improve the interlayer mechanical properties and reduce the orthotropy, • use experimentally homogenized orthotropic material properties to numerically model the mechanical behavior of the non-homogenous orthotropic 3D printed parts, • create an efficient numerical thermal model to predict the process-dependent thermal history of the 3D printed part, and • aid the manufacturing process by selecting a suitable set of processing parameters based on a simplified sequentially coupled thermomechanical model. …


3d Printing Of Hybrid Architectures Via Core-Shell Material Extrusion Additive Manufacturing, Robert Cody Pack May 2021

3d Printing Of Hybrid Architectures Via Core-Shell Material Extrusion Additive Manufacturing, Robert Cody Pack

Doctoral Dissertations

Biological materials often employ hybrid architectures, such as the core-shell motif present in porcupine quills and plant stems, to achieve unique properties and performance. Drawing inspiration from these natural materials, a new method to fabricate lightweight and stiff core-shell architected filaments is reported. Specifically, a core-shell printhead conducive to printing highly loaded fiber-filled inks, as well as a new low-density syntactic foam ink, are utilized to 3D-print core-shell architectures consisting of a syntactic epoxy foam core surrounded by a stiff carbon fiber-reinforced epoxy composite shell. Effective printing of test specimens and structures with controlled geometry, composition, and architecture is demonstrated …


Open Source 3d-Printable Planetary Roller Screw For Food Processing Applications, Marcello C. Guadagno, Jacob M. Loss, Joshua M. Pearce Apr 2021

Open Source 3d-Printable Planetary Roller Screw For Food Processing Applications, Marcello C. Guadagno, Jacob M. Loss, Joshua M. Pearce

Michigan Tech Publications

Historically, open source agriculture (OSA) was based on grassroots technology generally manufactured by hand tools or with manual machining. The rise of distributed digital manufacturing provides an opportunity for much more rapid lateral scaling of open source appropriate technologies for agriculture. However, the most mature distributed manufacturing area is plastic, which has limited use for many OSA applications. To overcome this limitation with design, this study reports on of a completely 3D-printable planetary roller screw linear actuator. The device is designed as a parametric script-based computer aided design (CAD) package to allow for the easy adaption for a number of …


Study Of Recyclable And Repairable Dynamic Covalent Polymers For Sustainable 3d Printing Development, Mingyue Zheng Feb 2021

Study Of Recyclable And Repairable Dynamic Covalent Polymers For Sustainable 3d Printing Development, Mingyue Zheng

Electronic Thesis and Dissertation Repository

3D printing technology with valuable features, including cost-saving, easy access, and unlimited structure design, has attracted significant attention and been employed for production use. This technology has also been considered as a sustainable manufacturing method and quickly developed in recent years. However, the development of sustainable 3D printing is still facing challenges, especially in waste management. Thanks to the flexibility of 3D printing and diversified printing mechanisms, the big step forward can be approachable by the transformation from materials. This dissertation presents a variety of strategies designed for sustainable 3D printing development based on the combination of dynamic covalent chemistry …


Impact Of Grain Orientation And Phase On Volta Potential Differences In An Additively Manufactured Titanium Alloy, Jake T. Benzing, Olivia O. Maryon, Nik Hrabe, Paul H. Davis, Michael F. Hurley, Frank W. Delrio Feb 2021

Impact Of Grain Orientation And Phase On Volta Potential Differences In An Additively Manufactured Titanium Alloy, Jake T. Benzing, Olivia O. Maryon, Nik Hrabe, Paul H. Davis, Michael F. Hurley, Frank W. Delrio

Materials Science and Engineering Faculty Publications and Presentations

This work introduces a method for co-localized multi-modal imaging of sub-μm features in an additively manufactured (AM) titanium alloy. Ti-6Al-4V parts manufactured by electron beam melting powder bed fusion were subjected to hot isostatic pressing to seal internal porosity and machined to remove contour–hatch interfaces. Electron microscopy and atomic force microscopy-based techniques (electron backscatter diffraction and scanning Kelvin probe force microscopy) were used to measure and categorize the effects of crystallographic texture, misorientation, and phase content on the relative differences in the Volta potential of α-Ti and β-Ti phases. Given the tunability of additive manufacturing processes, …


Leveraging Biomimicry And Additive Manufacturing To Improve Load Transfer In Brittle Materials, Ana Paula Bernardo Dec 2020

Leveraging Biomimicry And Additive Manufacturing To Improve Load Transfer In Brittle Materials, Ana Paula Bernardo

Graduate Theses and Dissertations

With the emergence of Additive Manufacturing (i.e., 3D printing) in construction, new strategically designed shapes can be created to improve load transfer through structural members and foundations. Cross-sections can be optimized to carry load using less material, or even using weaker constituent materials, like soils, which are cheap and abundant. The goal of this research is to investigate the benefits of using cellular patterns which leverage biomimicry in civil engineering applications, since nature has perfectly engineered materials and patterns which carry loads with the least amount of material possible. Most of the periodic cellular work to date has focused on …


Laser Powder Bed Fusion Of Nitihf High-Temperature Shape Memory Alloy: Effect Of Process Parameters On The Thermomechanical Behavior, Mohammadreza Nematollahi, Guher P. Toker, Keyvan Safaei, Alejandro Hinojos, S. Ehsan Saghaian, Othmane Benafan, Michael J. Mills, Haluk E. Karaca, Mohammad Elahinia Nov 2020

Laser Powder Bed Fusion Of Nitihf High-Temperature Shape Memory Alloy: Effect Of Process Parameters On The Thermomechanical Behavior, Mohammadreza Nematollahi, Guher P. Toker, Keyvan Safaei, Alejandro Hinojos, S. Ehsan Saghaian, Othmane Benafan, Michael J. Mills, Haluk E. Karaca, Mohammad Elahinia

Mechanical Engineering Faculty Publications

Laser powder bed fusion has been widely investigated for shape memory alloys, primarily NiTi alloys, with the goal of tailoring microstructures and producing complex geometries. However, processing high temperature shape memory alloys (HTSMAs) remains unknown. In our previous study, we showed that it is possible to manufacture NiTiHf HTSMA, as one of the most viable alloys in the aerospace industry, using SLM and investigated the effect of parameters on defect formation. The current study elucidates the effect of process parameters (PPs) on the functionality of this alloy. Shape memory properties and the microstructure of additively manufactured Ni-rich NiTiHf alloys were …


Additively Manufactured Parametric Universal Clip-System: An Open Source Approach For Aiding Personal Exposure Easurement In The Breathing Zone, Kirsi Kukko, Jan Sher Akmal, Anneli Kangas, Mika Salmi, Roy Björkstrand, Anna-Kaisa Viitanen, Jouni Partanen, Joshua M. Pearce Sep 2020

Additively Manufactured Parametric Universal Clip-System: An Open Source Approach For Aiding Personal Exposure Easurement In The Breathing Zone, Kirsi Kukko, Jan Sher Akmal, Anneli Kangas, Mika Salmi, Roy Björkstrand, Anna-Kaisa Viitanen, Jouni Partanen, Joshua M. Pearce

Michigan Tech Publications

Design for additive manufacturing is adopted to help solve problems inherent to attaching active personal sampler systems to workers for monitoring their breathing zone. A novel and parametric 3D printable clip system was designed with an open source Computer-aided design (CAD) system and was additively manufactured. The concept was first tested with a simple clip design, and when it was found to be functional, the ability of the innovative and open source design to be extended to other applications was demonstrated by designing another tooling system. The clip system was tested for mechanical stress test to establish a minimum lifetime …


Rational Design Of Cell Configurations For High-Performance Na-O2 Batteries, Xiaoting Lin Aug 2020

Rational Design Of Cell Configurations For High-Performance Na-O2 Batteries, Xiaoting Lin

Electronic Thesis and Dissertation Repository

Na-O2 batteries are considered as the promising candidates for electric vehicles due to their ultrahigh theoretical energy densities. However, state-of-the-art Na-O2 batteries suffer from serious challenges including 1) pore clogging and insufficient O2 transportation within the air electrode; 2) degradation of air electrode, 3) Na dendrite growth; and 4) Na corrosion induced by O2/O2- crossover. This thesis, therefore, focuses on rational design of cell configurations to address these problems and understanding the insight mechanisms.

3D printing of “O2 breathable” air electrodes for Na-O2 batteries were first developed. The unique air electrode …


Plastic Recycling In Additive Manufacturing: A Systematic Literature Review And Opportunities For The Circular Economy, Fabio A. Cruz Sanchez, Hakim Boudaoud, Mauricio Camargo, Joshua M. Pearce Aug 2020

Plastic Recycling In Additive Manufacturing: A Systematic Literature Review And Opportunities For The Circular Economy, Fabio A. Cruz Sanchez, Hakim Boudaoud, Mauricio Camargo, Joshua M. Pearce

Michigan Tech Publications

The rapid technical evolution of additive manufacturing (AM) enables a new path to a circular economy using distributed recycling and production. This concept of Distributed Recycling via Additive Manufacturing (DRAM) is related to the use of recycled materials by means of mechanical recycling process in the 3D printing process chain. This paper aims to examine the current advances on thermoplastic recycling processes via additive manufacturing technologies. After proposing a closed recycling global chain for DRAM, a systematic literature review including 92 papers from 2009 to 2019 was performed using the scopus, web of science and springer databases. This work examines …


Design For Additive Manufacturing, Michael Charonnat, Leonardo Franco-Muñoz, Sam Noble, J.P. Purdom Jun 2020

Design For Additive Manufacturing, Michael Charonnat, Leonardo Franco-Muñoz, Sam Noble, J.P. Purdom

Mechanical Engineering

This document outlines the critical design details and timeline for the Design for Additive Manufacturing Senior Project sponsored by Solar Turbines, Inc. The scope of this project encompasses the redesign of two of Solar Turbine’s cast parts for metal additive manufacturing in order to minimize lead time, cost, and weight. With the overall objective of performing in-depth analysis exploring affordability & feasibility, this redesign process will aid Solar Turbines in expanding their knowledge of Design for Additive Manufacturing principles and enable them to further incorporate the use of additive manufacturing into their production processes. The first part that the team …


Faculty Instruction Face Shield Project, David Holden, John Schneiderhan Apr 2020

Faculty Instruction Face Shield Project, David Holden, John Schneiderhan

Michigan Tech 3D Designs

Early in the spring of 2020 project contributors David Holden and John Schneiderhan began test printing a variety of open source Personal Protective Equipment (PPE)/Covid related items that could help protect or prevent the spread of the emerging virus. With assistance from Pete Baril of the Western Upper Peninsula Health Department (WUPHD) approval was obtained for the face shields to be used in the health care and nursing homes in the area. With the support and approval from university and library administration efforts were coordinated with Dr. Joshua Pearce and the students from the MOST lab to concentrate on the …