Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Decentralized Renewable Hybrid Mini-Grids For Rural Communities: Culmination Of The Irep Framework And Scale Up To Urban Communities, Blessing Ugwoke, Adedoyin Adeleke, Stefano P. Corgnati, Joshua M. Pearce, Pierluigi Leone Sep 2020

Decentralized Renewable Hybrid Mini-Grids For Rural Communities: Culmination Of The Irep Framework And Scale Up To Urban Communities, Blessing Ugwoke, Adedoyin Adeleke, Stefano P. Corgnati, Joshua M. Pearce, Pierluigi Leone

Michigan Tech Publications

The Integrated Rural Energy Planning (IREP) framework offers a unified road map for locating, planning and operating decentralized renewable hybrid off-grid energy systems for localized (rural) applications in low-income countries. This paper presents the culmination of the IREP framework and aims to illustrate the final step of the IREP framework for two communities in Nigeria. It is focused on two aspects. Firstly, the techno-economic modeling (investment and operation optimization) of a hybrid mini-grid system using HOMER Pro, a techno-economic evaluation tool; and evaluating the benefits of demand side management (DSM) based on energy efficiency on the overall system economics using …


Market-Conscious Strategies To Improve The Performance And Stability Of Planar, P-I-N Hybrid Organic-Inorganic Metal Halide Perovskite Solar Cells, Brandon Dunham Sep 2020

Market-Conscious Strategies To Improve The Performance And Stability Of Planar, P-I-N Hybrid Organic-Inorganic Metal Halide Perovskite Solar Cells, Brandon Dunham

Doctoral Dissertations

Planar, p-i-n (inverted) hybrid organic-inorganic perovskite solar cells that use low-temperature, solution-processable charge-transport layers have garnered much attention due to their direct compatibility with flexible substrates and cost-effective roll-to-roll manufacturing. Nevertheless, this architecture has failed to repeatedly achieve the superior power conversion efficiencies frequently attained by its n-i-p counterpart. Additionally, the perovskite active layer has poor stability in the presence of prolonged light exposure, high temperatures, and moisture. In this study, we propose commercially viable strategies to improve the performance and stability of inverted methylammonium lead iodide perovskite solar cells. First, we show that a simple two-step method comprising evaporation-induced …