Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

A Computational Investigation Of The Interstitial Oxidation Thermodynamics Of A Mo-Nb-Ta-W High Entropy Alloy Beyond The Dilute Regime, Adib J. Samin Dec 2020

A Computational Investigation Of The Interstitial Oxidation Thermodynamics Of A Mo-Nb-Ta-W High Entropy Alloy Beyond The Dilute Regime, Adib J. Samin

Faculty Publications

High entropy alloys (HEAs) are promising candidates for high-temperature structural material applications. Oxidation is a major factor that must be accounted for when designing such materials and it is thus important to study the oxidation behavior of HEAs to enable the optimum design of next generation materials. In this study, the thermodynamic behavior of interstitial oxygen in a Mo-Nb-Ta-W high entropy alloy was explored beyond the dilute limit. This was accomplished by sampling configurations of the HEA and HEA-oxygen systems from an isothermal–isobaric ensemble using a series of first-principle-based Monte Carlo simulations. It was found that the interstitial oxygen had …


Nonlinear Dynamics Of Carbon Steel Corrosion Under Gamma Radiation, Youn Gyeong Shin Aug 2020

Nonlinear Dynamics Of Carbon Steel Corrosion Under Gamma Radiation, Youn Gyeong Shin

Electronic Thesis and Dissertation Repository

Corrosion of materials is still an unresolved problem affecting a multitude of industries. One of the grand challenges facing the corrosion community is the development of high-fidelity models for corrosion in actual service environments. The difficulties arise since corrosion involves transfer of metal atoms between the solid and solution phases thus making the system non-adiabatic. Interfacial transfer of atoms increases the chance of establishing systemic feedback between chemical reactions and transport processes, which results in chemical oscillation and periodic patterns on the corroding surfaces. These oscillating behavior in electrochemical measurements and pattern formation on corroding surfaces have been reported in …


Aqueous Redox Flow Batteries With Boron Doped Diamond As An Electrode., Alex M. Bates Aug 2020

Aqueous Redox Flow Batteries With Boron Doped Diamond As An Electrode., Alex M. Bates

Electronic Theses and Dissertations

As the interest and implementation of renewable energy accelerates, so does that of grid energy storage. It is widely believed that a cost-effective energy storage technology will bring about the proliferation of renewable energy. Redox flow battery (RFB) technology represents a promising solution to cost-effective grid energy storage. Compared to other technologies, RFBs have a long lifetime, high efficiency, are non-flammable, significantly reduce cost, and separately scale power and energy. The separation of power and energy enables increased energy capacity by simply adding electrolyte volume. Of the challenges facing RFB technology, one readily apparent is the cost of the active …


Electrochemical Response Of A Single Wire-Electrode Ac Probe In 3.5wt.% Nacl, Zhen-Wen Zou, Da-Jiang Zheng, Zi-Ming Wang, Guang-Ling Song Jun 2020

Electrochemical Response Of A Single Wire-Electrode Ac Probe In 3.5wt.% Nacl, Zhen-Wen Zou, Da-Jiang Zheng, Zi-Ming Wang, Guang-Ling Song

Journal of Electrochemistry

In this paper, a recently developed single wire-electrode AC probe technology which does not need a reference or counter electrode was employed to investigate the electrochemical corrosion and sacrificial anode protection behaviors of steel and zinc in 3.5wt.% NaCl. With this simple, fast, reliable and stable probe, the instantaneous corrosion rate and accumulated corrosion loss of carbon steel in 3.5wt.% NaCl were measured, and the results revealed that both were greater than those of zinc. Furthermore, the observed different corrosion behaviors between carbon steel and zinc during the immersion could be caused by their different surface films. With the galvanic …


Design, Microstructure And Properties Of Metastable Beta-Type Biomedical Titanium Alloys, Syed Faraz Jawed Jan 2020

Design, Microstructure And Properties Of Metastable Beta-Type Biomedical Titanium Alloys, Syed Faraz Jawed

Theses: Doctorates and Masters

Many existing implant biomaterials including cobalt-chromium alloy, stainless steel, Ti-6Al-4V and commercially pure titanium have all been shown to demonstrate mechanical incompatibility, poor osseointegration and/or cause cytotoxic effects on the human body after some years of application, leading to revision surgery in most cases. Consequently, there is an immediate need for an enduring biomaterial that displays good mechanical properties and possesses biocompatibility and corrosion resistance, in order to reduce rates of revision surgeries. In this PhD work, based on the 𝐵𝑜̅̅̅̅-𝑀𝑑̅̅̅̅̅, 𝑒/𝑎̅̅̅̅̅-𝛥𝑟̅̅̅ and BF-d-electron superelastic theoretical relationships four new series of quaternary Ti-25Nb-8Zr-xCr, Ti-25Nb-xSn-yCr, Ti26Nb-xMn-yZr and Ti-25Nb-xMn-ySn alloys have been …